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Abstract

We discuss the fundamental issue of identification in linear instrumental variable (IV) models with unknown IV
validity. With the assumption of the ‘sparsest rule’, which is equivalent to the plurality rule but becomes
operational in computation algorithms, we investigate and prove the advantages of non-convex penalized
approaches over other IV estimators based on two-step selections, in terms of selection consistency and
accommodation for individually weak IVs. Furthermore, we propose a surrogate sparsest penalty that aligns
with the identification condition and provides oracle sparse structure simultaneously. Desirable theoretical
properties are derived for the proposed estimator with weaker IV strength conditions compared to the
previous literature. Finite sample properties are demonstrated using simulations and the selection and
estimation method is applied to an empirical study concerning the effect of body mass index on diastolic
blood pressure.
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1 Introduction

Recently, estimation of causal effects with high-dimensional observational data has drawn much
attention in many research fields such as economics, epidemiology, and genomics. The instrumen-
tal variable (IV) method is widely used when the treatment variable of interest is endogenous. As
shown in Figure 1, the ideal IV needs to be correlated with the endogenous treatment variable
(C1), it should not have a direct effect on the outcome (C2) and should not be related to unob-
served confounders that affect both outcome and treatment (C3).

Our research is motivated by the difficulty of finding IVs that satisfy all the above conditions. In
applications, invalid IVs (violation of C2 or C3) (Davey Smith & Ebrahim, 2003; Kang et al.,
2016; Windmeijer et al., 2019) and weak IVs (concerning the weak correlation in C1) (Bound
et al., 1995; Staiger & Stock, 1997) are prevalent. A strand of literature studies the ‘many weak
IVs’ problem (Andrews et al., 2018; Chao & Swanson, 2005). With the increasing availability
of large datasets, IV models are often high-dimensional (Belloni et al., 2012; Fan & Zhong,
2018; Lin et al., 2015), and have potentially weak IVs (Andrews et al., 2018), and invalid IVs
(Guoetal., 2018; Windmeijer et al., 2021). Among those problems, we mainly focus on the invalid
IV problem, while allowing for potential high-dimensionality and weak signals.

1.1 Related works

Most related works fall into two main categories: robust estimation with invalid IVs and estima-
tion which can select valid IVs without any prior knowledge of validity. The first strand of litera-
ture allows all IVs to be invalid. For example, Lewbel (2012), Tchetgen et al. (2021), and Guo and
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Figure 1. Relevance and validity of instrumental variables (IVs).

Bithlmann (2022) utilized conditional heteroskedasticity or heterogeneous curvatures to achieve
robustness with potentially all IVs invalid. However, their performances are not satisfactory
once the identification condition is not evident.

The second strand focused on unknown invalid IVs, while imposing certain identification con-
ditions on the number of valid IVs. Kang et al. (2016) proposed a Lasso type estimator (sisVIVE).
Windmeijer et al. (2019) pointed out the inconsistent variable selection of sisVIVE under a relative
IV strength condition and proposed an adaptive Lasso estimator, which has asymptotic oracle
properties under the assumption that more than half of the IVs are valid, also called the majority
rule. Guo et al. (2018) and Windmeijer et al. (2021) further developed two-step (the first one for
relevance, the second one for validity) selection approaches, two-stage hard thresholding (TSHT)
and confidence intervals IV (CIIV), respectively, under the plurality rule conditional on the set of
relevant IVs. The plurality rule states that the valid IVs form the largest group. However, the ap-
proaches mentioned above are not robust to many weak IVs due to the restriction of the majority/
plurality rule amongst the strong IVs instead of all IVs. Our method closely follows this strand of
literature. Instead of a two-step selection, we require the plurality rule for valid IVs for a one-step
selection procedure, thus considerably relaxing the requirement of valid IVs in theory and most
practical scenarios.

The study of many (weak) IVs originated from empirical motivations but often assumed known
validity. For example, Staiger and Stock (1997), Hansen et al. (2008), Newey and Windmeijer
(2009), and Hansen and Kozbur (2014) considered different estimators for situations with
many (weak) valid IVs but fixed the number of known covariates. Kolesar (2018) allowed the
number of covariates to grow with the sample size. Seng and Li (2022) introduced an alternative
model averaging method to handle weak IVs in low- and high-dimensional settings. We consider
the weak IV issues that are prevalent in empirical studies.

1.2 Main results and contributions

We propose a Weak and Invalid IV robust Treatment effect (WIT) estimator. The sparsest rule is
sufficient for identification and is operational in numerical optimization. The proposed procedure
has a selection stage (regarding IV validity) and a post-selection estimation stage. The selection
stage is a penalized IV-regression via minimax concave penalty (MCP, Zhang, 2010), a proper sur-
rogate penalty aligned with the identification condition to achieve model selection consistency of
valid IVs under much weaker technical conditions than existing methods (Guo et al., 2018;
Windmeijer et al., 2021). In the estimation stage, we utilize the limited information maximum like-
lihood (LIML) estimator to handle the weak IVs (Staiger & Stock, 1997). An efficient computa-
tional algorithm for the optimal solution is provided in the online supplementary material. The
computer codes for implementing the WIT estimator are available at https:/github.com/
QoifoQ/WIT.

The key contributions of this paper are summarized as follows:

(a) We provide a self-contained framework to investigate the fundamental problem in model
identification for linear IV models with unknown validity of instruments. Specifically, we
study the identification condition from the general data-generating process (DGP) frame-
work. Furthermore, we discuss the alignment of model identification and variable selection
regarding IV validity, which requires a non-convex penalty function.
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(b) This study extends the IV estimation with unknown invalid IVs (namely, Guo et al., 2018;
Kang et al., 2016; Windmeijer et al., 2019, 2021) to allow for many potentially weak IVs.
We show that the sparsest rule, equivalent to the plurality rule on the whole IV set, could ac-
commodate weak IVs in empirically relevant scenarios. Furthermore, we revisit the penalized
approaches using the sparsest rule and propose a concept of proper surrogate sparsest penalty
that targets identification conditions and provides sparse structure. We propose to deploy
MCP as a surrogate sparsest penalty and ensure the targeted solution is the global minimizer.
On the contrary, the existing methods (Kang et al., 2016; Windmeijer et al., 2019) do not fit
the surrogate sparsest penalty and hence are mistargeting the model identification.

(c) Our method is a one-step valid IV selection instead of the previous sequential two-step selec-
tions (Guo et al., 2018; Windmeijer et al., 2021). This allows us to utilize individually weak
IVs instead of discarding them. We provide theoretical foundations to ensure the compati-
bility of weak IVs under a mild minimal signal condition. Formally, we establish the selection
consistency of the valid IV set, the consistency, and asymptotic normality of the proposed
treatment effect estimator under many potentially invalid and weak IVs, where both the
number of valid and invalid IVs are increasing with the sample size N. We also provide
the theoretical results for the case of a fixed and finite number of [Vs. Our model accommo-
dates different rates for IV validity violations which are illustrated through representative
low- and high-dimensional cases.

The article is organized as follows. In Section 2, we describe the model with some invalid IVs and
analyze identification conditions in a general way. In Section 3, we present the methodology and
the novel WIT estimator. We establish the theorems to identify the valid IVs, estimation consist-
ency, and asymptotic normality. Section 4 shows the finite sample performance of our proposed
estimator using comprehensive numerical experiments. Section 5 applies our methods to study
the effect of body mass index (BMI) on diastolic blood pressure (DBP) using Mendelian
Randomization. Section 6 concludes. An online supplementary material contains additional dem-
onstrations and simulations as well as detailed proofs of the theoretical results.

2 Model and identification strategy

2.1 Potential outcome model with some invalid Vs

Fori=1,2, ..., n, we have the random sample (Y;, D;, Z; ), where Y; € R! is the outcome variable,
D, € R is the (endogenous) treatment variable and Z; € R? are the potential IVs. Following the same
model setting as in Small (2007), Kang et al. (2016), Guo et al. (2018), and Windmeijer et al. (2019,
2021), we consider a linear functional form between treatments D; and instruments Z; as the first-
stage specification; meanwhile, a linear exposure of Y; and D; and Z; is assumed as follows:

Y,' = Dlﬁ* + ZlTa* + ¢,
D;=Z[y" +un;,

where ¢;, 5; are random errors.

Remark 1 Assuming a homogeneous treatment effect (denoted as %) among subjects sim-
plifies the identification problem in instrumental variable analysis.

Following Kang et al. (2016), we define the valid instruments as follows,
Definition 1 Forj=1, ..., p, the jth instrument is valid if ¢} = 0.

The validity of the jth IV is quantified by &, which captures the direct effect of the potential IV
Z; on the outcome (C1) as well as its influence on unmeasured confounders (C2). More details can
be found in Kang et al. (2016). Further, we define the valid IV set V* = {j: o =0} and invalid IV set
V& ={j:ar # 0}. Let py- =|V*|, pye = V| and p = py+ + py=. Notably, py+ > 1 refers to the ex-
istence of an excluded IV, thus satisfying the order condition (Wooldridge, 2010). Let the n x p
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matrix of observations on the instruments be denoted by Z, and the n-vectors of outcomes and
treatments by Y and D, respectively. We consider the cases of many and weak IVs in equation
(1) and make the following model assumptions:

Assumption 1  (Many valid and invalid IVs). p<n, pyer /1= vy + o(n~1/2), and
pv-/n — vp,. + o(n~1/?) for some non-negative constants v,,.. and v,
such that 0 <v,,. + 0, <1.

Assumption 2 Assume Z is standardized. It then has full column rank and ||Z,-||% < nfor
i=1,2, ...,p.

Assumption 3 Let u;=(c;,7;)". u; | Z; are i.i.d. and follow a multivariate normal
distribution with mean zero and positive definite covariance matrix

Y= ( ot O > The elements of X are finite and o, # 0.

0-5,77 n

Assumption 4  (Strength of valid IVs). The concentration parameter u,, grows at the same
rate as i, 1.e. i, := yg* Z}.Mgz,. Zyyy,. /oﬁ—mon, for some 1, > 0.

Assumption 1 is identical to the assumption of many instruments in Kolesar (2018). It relaxes the
conventional many IVs assumptions (Bekker, 1994; Chao & Swanson, 2005) that only allow the di-
mension of valid IVs py~ to grow with n. Also, it has not been considered in the literature on selecting
valid IVs (Guo et al., 2018; Kang et al., 2016; Windmeijer et al., 2019, 2021). Assumption 2 is stand-
ard for data pre-processing and scaling Z;. Assumption 3 follows Guo et al. (2018) and Windmeijer
et al. (2021) to impose the homoskedasticity assumption and endogeneity of treatment D;.

Remark 2 Under the setting of many valid and invalid IVs, i.e. v,.. # 0 and vy, # 0, the
homoskedasticity assumption is necessary for the LIML estimator in the esti-
mation stage (see details in Section 3) to be consistent. In the low-dimensional
case, i.e. 0p,.. = 0p,. =0, we can relax Assumption 3 and use a heteroskedastic-
ity robust version of the TSLS estimator. The normality condition in
Assumption 3 is not required for the selection stage; it is required only for
the estimation stage (asymptotic results of the embedded LIML estimator).
Relaxing the normality assumption could impact the formula of standard er-
rors and its consistent variance estimator (Kolesar, 2018).

Assumption 4 implies a strong identification condition in terms of the concentration parameter
(Bekker, 1994; Newey & Windmeijer, 2009). In the fixed p case, it indicates the presence of a con-
stant coefficient y;, 3j, and the rest of IVs could be weak (Staiger & Stock, 1997). Specifically, we
model weakly correlated IVs as y = Cn™%, 0 < 7 < 1/2, which is the ‘local to zero’ case (Staiger &
Stock, 1997). Essentially this is a mixture of constant y-type and asymptotically diminishing y-type
instruments for fixed p. For p — oo in the same order as 7, we allow all the IVs to be weak in the
‘local to zero’ case with specified rates. This IV strength assumption can be further weakened along
the lines of Hansen et al. (2008) to have weak identification asymptotics. In this paper, we focus on
the individually weak (diminishing to zero as in Staiger & Stock, 1997) signals model in high-
dimensionality. Notice our model allows for much weaker individually weak IVs regardless of
their validity (as long as the concentration parameter satisfies Assumption 4), unlike that of
Guo et al. (2018). Nevertheless, the constant g, can be a small number to accommodate empiric-
ally relevant finite samples with many individually weak I'Vs.

2.2 Identifiability of Model (1)
The following moment conditions can be derived from Model (1):

E(ZT(D . Zy*)) -0, E(ZT(Y _Dp - Za*)) —0= T =a + 59, (2)
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where I'* = E(Z"Z)'E(Z"Y) and y* = E(Z" Z)"'E(Z" D), both are identified by the reduced-form
models. Without the exact knowledge about which IVs are valid, Kang et al. (2016) considered the
identification of (a*, §*) via the unique mapping of

B =T/ =B +a/. (3)

Notice that the moment conditions (2) consist of p equations, but (a*, *) € R?*! need to be esti-
mated and is hence under-identified without further restrictions. Kang et al. (2016) proposed a suf-
ficient condition, called majority rule (first proposed by Han, 2008), such that py» > [p/2], to
identify the model parameters without any prior knowledge of the validity of individual IVs.
However, the majority rule could be restrictive in practice. Guo et al. (2018) further relaxed it
to the plurality rule as follows:

Plurality Rule: ‘V* = {j:a’;/y’; = OH > rrcljoxHj:a’;/y"; = CH, (4)

which was stated as an ‘if and only if’ condition of identification of (a*, ).

We re-examine the identifiability problem from the model DGP perspective. Given first-stage
information: {D, Z, y*}, without loss of generality, we denote the true DGP with {#*, a*, €} in equa-
tion (1) as DGP P, that generates Y. Given this Py, for j € V*, we obtain an alternative represen-
tation: Zo = Z—;(D =2 Ziyf —n). Denote I.={j€eV”:c=a’/y;}, where c#0. For
compatibility, wé denote Zog = V*. Thus, we can reformulate Y = Df* + Za* + € in equation (1) to:

Y =Df + Za + &, (5)

where {8, @, &) = {B" + ¢, a* — cy*, € — ey}, for some j € V. Evidently, for different ¢ # 0, it
forms different DGPs P, = {§°, &, &} that can generate the same Y (given €), which also satisfies
the moment condition (2) as Py since E(Z'¢) = 0. Building on the argument of Guo et al. (2018),
Theorem 1, the additional number of potential DGPs satisfying the moment condition (2) is the
number of distinguished ¢ # 0 for j € V*. We formally state this result in the following theorem.

Theorem 1 Suppose Assumptions 1-3 hold, given Py and {D, Z, y*, 5}, it can only pro-
duce additional G = [{c # 0: 07 /y; =c, j € V™}| groups of different P, such
that V*U{uUm Z={1,2...,p}, V’'NI.,=@ for any ¢c#0 and Z.n
T: = for ¢ # ¢, and E(Z"&) = 0. The sparsity structure regarding a is non-
overlapping for different solutions.

Theorem 1 shows there is a collection of model DGPs (different parametrizations)
Q={P={B, a, ¢}:ais sparse, E(Z"¢) = 0} (6)

corresponding to the same observation Y conditional on first-stage information. Given some Py,
there are additional 1 < G < pye equivalent DGPs. All members in Q are related through the
transformation procedure (5) and 1<|Q|=G+ 1 <p. Notably, the non-overlapping sparse
structure among all possible DGPs leads to the sparsest model regarding a* being equivalent to
plurality rule |[V*| > max.x0|Z,| in the whole set of IVs.

2.3 The sparsest (a) rule

The sparsest rule is conceptually equivalent to the plurality rule on the whole IV set, considering
the non-overlapping sparse solutions given by Theorem 1. To relax the majority rule, Guo et al.
(2018) proposed to use the plurality rule based on the relevant IV set:

'V}: {jeS*:aj/y’}f:O” >nCl:0xHjeS*:a’;/y’/‘-=c]

, (7)
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where S* is the set of strong IVs estimated by S via first-step hard thresholding. Thus, TSHT and
CIIV explicitly leverage the S-based plurality rule to estimate Vi and f*.

In contrast to earlier studies on invalid IVs, our approach leverages the information from weak
IVs. First, weak IVs can be employed to estimate £*. In situations where strong IVs are not avail-
able, weak IV robust estimators such as LIML prove useful (Andrews et al., 2018). Second, weak
IVs can aid in the identification of the valid IVs set, as demonstrated in Theorem 2. When weak IVs
are present, the plurality rule applied after the initial selection of strong instruments may yield un-
stable estimates of V*, as exemplified in the following scenario.

Example 1 (Weak and invalid IVs). Let y*=(0.043,0.5,,0.2,0.14)" and
a*=(05,1,0.74)7. There are therefore three groups: Zp=V*=(1,2,
3,4,5), Zs ={6}, Z; = {7, 8, 9, 10}, and plurality rule |Zo| > max.=s7|Z.|
holds in the whole IVs set. This set-up satisfies the individually weak IVs
in fixed p (discussed later in Corollary 1). Figure 2 shows that the selection
of valid IVs by CIIV and TSHT breaks down in finite samples, e.g. for
N € [500, 2,000]. This is because the solution of the plurality rule after
first-stage selection in the finite sample (which may not hold in practice
even though it is in theory) is quite sensitive to IV strength and sample sizes.
On the other hand, weak IVs also deteriorate the performance of CIIV with-
out first-step selection. Notably, the proposed WIT estimator significantly
outperforms others. Figure 3 demonstrates the relevant set S* selected by
plurality rule-based TSHT and CIIV. It clearly shows & is unstable and
changes with sample size, even though the plurality rule holds in the whole
IV set.

The mixture of weak and invalid IVs is ubiquitous in practice, especially in many IVs cases. For
the sake of using all instruments’ information for estimating #* and identification of V*, we allow
some individual IV strengths to be local to zero (Chao & Swanson, 2005), say y¥ — 0, or a small
constant that cannot pass the first-stage threshold (Guo et al., 2018) unless with a very large sam-
ple size. However, we can see that in equation (3), plurality rule-based methods that rely on first-
stage selection are problematic, since Zo = {j: of /; = 0} is ill-defined asymptotically due to the
problem of ‘0/0” if y¥ is local to zero.

For using weak IVs information and improving finite sample performance, we turn to the spars-
est rule that is also operational in computation algorithms. From the multiple DGPs O, recall
P.={f, &, & =" +c, a* — cy*, € — cn}, where a7 = 0. For other elements in & (corresponding
to a different DGP in Q) and j € {j: a7 /y; = & # c}, we obtain

11 = lot — cpfl = Lo )y} —cl - i1 = e = el - I7}]. (8)

The above |&f| needs to be distinguished from 0 on the ground of the non-overlapping structure
stated in Theorem 1. To facilitate the discovery of all solutions in Q, we assume:

Assumption 5  (Separation condition). @es Imin > &(12) and |65 > x(n)  for
j E€ljzof/y; =¢# cl, where x(n) and x°(n) are a generally vanishing
rate specified by a particular estimator.

The conditions described above are comparable to the ‘beta-min’ con-
dition (Loh & Wainwright, 2015; van de Geer & Bithlmann, 2009). The
rates k(n) and x°(n) will be further specified in Theorem 2. We aim to fa-
cilitate the understanding of these technical conditions by providing prac-
tical examples. In Section 3.3, we introduce two commonly encountered
DGPs in both low and high dimensions. These examples demonstrate
the validity of Assumption 5 without delving into the intricate specifics
of the separation (beta-min) condition.

Remark 3 Notably, as shown in equation (8), |&5| = ¢ —¢| - lyf1 > < (n) depends on the
product of |¢—¢| and lyfl. As discussed in Guo et al. (2018), |¢ - ¢| cannot
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Figure 2. The proportion of correct selection of (subset) valid IVs based on 500 replications on each sample size.

be too small to separate different solutions in Q, and a larger gap | — ¢| is help-
ful to mitigate the problem of small or local to zero |y} | in favour of our model.

Hence, the identification condition known as the sparsest rule is formally defined as

Assumption 6  (The sparsest rule). & = argminp_; , jeo ll@llo-

Example 1

(continued). Following the procedure (5), we are able to reformulate two
additional solutions of equation (2) given the DGP of Example 1,
a*=(05,1,0.74)": & =(-0.23,-2.5,,0,0.24)7 and & =(-0.283, -3.5,,
—0.4,04)". Thus, the sparsest rule argmin, e, ;5 o7y ll@llo picks a* up, and
Assumption § is easy to satisfy since fixed minimum absolute values except
0 are 0.7,0.2,0.28 in a*, &, @', respectively. This example shows the first-
stage signal should not interfere with the valid IV selection in the structural
form equation in equation (1), as long as the first-stage has sufficient informa-
tion (concentration parameter requirement in Assumption 4). Therefore,
the most sparse rule using the whole IVs set is desirable. It is also shown to
be stable in numerical studies. The detailed performance of the proposed
method under this example refers to Case A1(Il) in online supplementary
Appendix AS.

In the next subsection, we re-examine the penalized approaches by Kang et al. (2016) and
Windmeijer et al. (2019), and discuss a class of existing estimators concerning penalization, iden-
tification, and computation. We also explore the general penalization approach that aligns model
identification with its objective function.

2.4 Penalization approaches with embedded surrogate sparsest rule

A Lasso penalization approach was first used in the unknown IV validity context by Kang et al.
(2016). We extend this to a general formulation and discuss the properties of different classes

of penalties.

Consider a general penalized estimator based on moment conditions (2),

a 1 en
(@, pr") = argmin o || Pz(Y — Za — DB)II; + p} (@) )
a8 n —

it dl
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Increase Sample Size n

where ppen( )=>1 Lp

and pP™(-) is its derivative that satisfy: hm pr (x) =2, pP(0) =0, PP (x) = pi (- ),

() and p7*"(-) is a general penalty function with tuning parameter 4 > 0

(x = y)(PE" (%) = pE(y)) = 0, and pi(-) is continuous on (0, o).

In the RHS of equation (9), (I) and (II) correspond to two requirements for the collection of valid
DGPs in Q defined in equation (6). Part (I) is a scaled finite sample version of
E(Z"e)"(Z7Z)" (Z"¢)), which is a (ZTZ)™! weighted quadratic term of condition E(Z ¢) =0,
and (II) is imposed to ensure sparsity structure in @.

Further, regarding (I), one can reformulate (9) with respect to aP*" as

1 -
aPen =argmin2—||Y—Za||2+p§en( a), (10)
o n

where Z = MBZ and D=P;D= Zy, where 7 is the least squares estimator of p, see Kang et al.
(2016). The design matrix Z is rank-deficient with rank p — 1 since Zy = 0. However, we show
that it does not affect the a support recovery using a proper penalty function. On the other
hand, Z is a function of #, y* and Z, hence is correlated with ¢. This inherited endogeneity initially
stems from D, in which E(D"¢) = o? ,0/n does not vanish in the many IVs model (Assumption 1).

The following lemma implies that the level of endogeneity of each Z; is limited.

Lemma 1 Suppose Assumptions 1-4 hold and denote average gram matrix Q,, = Z"Z/n.
The endogeneity level of the jth transformed IV Z; follows:
Q. .
=t L0, ),
»TQr+op/n "
—_—

dilutionweight

(11)

E’

~ T
Z]- €/n= az,lp/w
——

E(D"¢/n)

Remark 4 Under Assumption 1, p/n — v,,. + 0p,.. <1 does not vanish as # — oco. The
dilution weight is related to Q,, and first-stage signal y*. In general the dilution
weight is o(1) and hence negligible except for the existence of dominated y?.
However, in the fixed p case, since p/n — 0, the endogeneity of Z dlsappears
asymptotically.

Concerning (II) in equation (9), Theorem 1 shows that model (1) can be identified by different

strategies with non-overlapping results. On the ground of the sparsest rule assumption, the role of
o hen . .

the penalty on a, i.e. p;° (a), should not only impose a sparsity structure but also serve as an ob-
jective function corresponding to the identification condition we choose. For example, the penalty
Allally matches the sparsest rule.

To see the roles of a proper penalty function clearly, we rewrite equation (9) into an equivalent
constrained objective function with the optimal penalty ||a||, regarding the sparsest rule:

(@, f°") = argmin [lally  s.t. |Pz(Y — DB — Za)|3 <, (12)

ap
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where ¢ is the tolerance level which we specify in Section 4. The constraint above narrows the feas-
ible solutions into Q because it aligns with the Sargan test statistic, Sargan (1958), ||Pz(Y — DB —
Za)|3/|(Y — DB — Za)/ /1|5 = O, (1) under the null hypothesis E(Z"¢)=0 as required in Q;
otherwise, the constraint becomes O, () that cannot be bounded by d. Thus, a properly chosen
d in equation (12) leads to an equivalent optimization problem

(@, f°*) = argmin |l
P={p,a,c}€Q

that matches the identification condition in Assumption 6. Therefore, the primary optimization
object in equation (12) should also serve as an identification condition: the sparsest rule.

Remark 5 The constrained optimization perspective provides valuable insights into the
issue of invalid IVs in equation (1). Specifically, the penalty term in equation
(9) not only imposes a sparse structure but also serves as an identification
rule differing from penalized linear regressions without an endogeneity issue.

Due to computational NP-hardness for |||y in equation (12), a surrogate penalty function is
needed. Kang et al. (2016) proposed to replace the optimal /y-norm with Lasso in equation (9),
denoting their estimator sisVIVE as (@, 7). And V* is estimated as V% ={; :6??“ =0).
However, the surrogate ¢; penalty brings the following issues: (a) Failure in consistent variable
selection under some deterministic conditions, namely the sign-aware invalid IV strength (SAIS)
condition (Windmeijer et al., 2019, Proposition 2):

[ye-sgn(age )| > |7, (13)
The sisVIVE cannot achieve Py under the SAIS condition, which is likely to hold when the invalid
IVs are relatively stronger than valid ones. (b) Kang et al. (2016, Theorem 2) proposed a non-

1°

asymptotic error bound | — g*| for sisVIVE. The dependence of the restricted isometry property
(RIP) constant of PBZ and the error bound is not clear due to the random nature of D. (c) The ob-

jective function deviates from the original sparsest rule: g1 (P) = |||l and g2 (P) = ||a||; correspond
to incompatible identification conditions unless satisfying an additional strong requirement

"= argmin gi(P), Vj=1,2¢ [la*—-cy*lly > lla*];, VYc#0, (14)
P={p,a,c}€Q

which further impedes sisVIVE in estimating 8* € Py.

Problems (a) and (b) relate to the Lasso problem within invalid IVs, while (c) exposes a deeper
issue beyond Lasso: a proper surrogate penalty in equation (10) must align with the identification
condition.

Windmeijer et al. (2019) suggested the Adaptive Lasso (Zou, 2006), using as an initial estimator
the median estimator of Han (2008) to tackle problem (a)’s SAIS issue. This solution also addresses
(c) concurrently. However, it necessitates a more demanding majority rule and requires all IVs to
be strong in the fixed p case. Like TSHT and CIIV, it is sensitive to weak IVs.

The following proposition outlines the appropriate surrogate sparsest penalty.

Proposition 1  (The proper surrogate sparsest penalty). Suppose Assumptions 1-6 are sat-
isfied. If p?"(a) is the surrogate sparsest rule in the sense that it gives sparse
solutions and

a* = argmin |lallp= argmin p}"(a), (15)
P={p,a,€}€Q P={p,a,€}€Q

pen/

then pY"(-) must be concave and pi™" (¢) = O(Ak(n)) for any > «(n).

The surrogate sparsest penalty requirement aligns with the folded-concave penalized method
(Fan & Li, 2001; Zhang, 2010). We adopt MCP penalty for our proposed approach in the
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following. In standard sparse linear regression, MCP necessitates A = A(n) = O(y/logp/n) and
pi“cp,(t) =0 for #> CJ, with C a constant, fulfilling Proposition 1. We further elaborate that
this property is applicable in invalid IVs scenarios in the following section, and demonstrate its
ability to bypass sisVIVE’s shortcomings shown in (a) and (b).

Remark 6  Proposition 1 mandates concavity for the surrogate penalty, precluding the use of
Adaptive Lasso. However, by imposing additional conditions like the majority
rule, which identifies a*, the Adaptive Lasso penalty can satisfy equation (15). It
is crucial to differentiate the motivation for using concave penalties in the surro-
gate sparsest penalty from the one for debiasing techniques such as the debiased
Lasso (Javanmard & Montanari, 2018). The latter may not fulfil the identification
condition, thus potentially altering the objective function (12).

3 WIT estimator

3.1 Estimation procedure

We implement the penalized regression framework (9) and specifically employ a concave penalty

in equation (10), the MCP, which provides nearly unbiased estimation. The MCP is favoured nu-

merically for its superior convexity in penalized loss and its consistent variable selection property

without imposing incoherence conditions on the design matrix (Feng & Zhang, 2019; Loh &

Wainwright, 2017). This makes MCP more suited to two-stage estimation problems than Lasso.
The selection stage is formally defined as

~ .1 5
aMer =argmlnﬂ||Y—Za||% + pMP (q), (16)
where Z = MBZ’ and D=P;D = Zj are the same as in equation (10). pM°F(a) = 1/;] pMP(ay) =
l;z] l)a" (A—t/p), dt is the MCP penalty and p > 1 is the tuning parameter, which also controls

convexity level 1/p, and its corresponding derivative is pi“cp,(t) = (A—t|/p);. Unlike Lasso,

MCP imposes no penalty when |¢;| > Ap, resulting in nearly unbiased coefficient estimation and
exact support recovery without the SAIS condition (see online supplementary Appendix A2 for
further discussion). Consequently, a consistent estimation of the valid IVs set, i.e. V = {j ' =0}
and Pr(V = V*) A 1, is expected to hold under more relaxed conditions. We next illustrate how
the WIT blends the benefits of penalized TSLS and LIML estimators at various stages.

The LIML estimator is consistent not only in classic many (weak) IVs (Bekker, 1994; Hansen
et al., 2008) but also in many IVs and many included covariates (Kolesar, 2018). However, sim-
ultaneous estimation of j;,,; and V° in equation (18) below is difficult. In the selection stage (9), we
use the moment-based objective function. If we do not consider the penalty term (II), the moment-
based part (I) of equation (9) coincides with TSLS. Furthermore, the bias in TSLS has a limited
effect on consistent variable selections (see Theorem 2). In the estimation step, however, due to
LIML’s superior finite sample performance and the issue of TSLS in the presence of many (or
weak) IVs even when V* is known (Chao & Swanson, 2005), we embed the LIML estimator to
estimate B on the basis of estimated valid IVs set via equation (16). The performance of
oracle-TSLS shown in simulations verifies this choice.

Consequently, we proposed the WIT estimator in the estimation stage,

(B, &g‘g{T)T=([D, Z ] (T = RimiMz) [D, Z‘A,c])_1 ([0, 2] (1 - kimMZ)Y), (1)

fint = min {G(8) = (¥ = DAY Ma(Y = D)) ((V = DR Mz, (Y=Dp) ), (18)
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Note, equation (17) belongs to the general k-class estimators (Nagar, 1959), whose properties
vary upon the choice of , i.e. & =0 refers to the ordinary least squares (OLS) and # =1 reduces
to the TSLS estimator. Equation (18) has a closed-form solution: k=

Jmin({[Y, D]"Mz[Y, D]}~ Y{[Y, D]" Mgz, [Y, D]}), where Amin(-) denotes the smallest eigenvalue.

Focusing on AV'T as the primary interest, we reformulate equations (17) and (18) based on the re-

siduals of Y, D, Z;, on Z;.. Denote Y, = Mz, Y, D, =Mz, D and Z;, = Mz, Z; and notice
Mz, Mz, = Mz, thus it is equivalent to derive asymptotic results on the following model (19).

T (DI (I - fqimlMZm)Dl)_l (DI (1 - fqimlMZm)Yl), (19)
Rimi = Zmin (Y1, D] "Mz, [V, L)} (Y, Du]"[Y1, DL)). (20)

3.2 Asymptotic behaviour of WIT estimator

Throughout this section, we aim to recover the one specific element in Q, denoted as (8, a*, ¢).

Though a slight abuse of notation, we use @ to denote a local solution of equation (16) with MCP.
All local solutions of equation (16) we consider are characterized by the Karush-Kuhn-Tucker

or first-order condition, i.e.

. 1)

Explicitly, to the end of finding valid IVs via comparing with true signal a*, we rewrite equation
(21) as

(- 1fa]) <sen(@)Z] (¥ - Za)/m<iy, jeVr )
|2} (v - Zay /|2, jev,

where the inequalities in the first line stem from the convexity of the MCP penalty and in the last
line originate in the sub-derivative of the MCP penalty at the origin.

_ Asdiscussed in Section 2, Z is a function of (Z, y*, ) and thus endogenous with €. The fact that
Z inherits the randomness of i distinguishes itself from the general assumptions put on the design
matrix, and obscures the feasibility of conditions required to achieve exact support recovery in the
literature of penalized least squares estimator (Feng & Zhang, 2019; Loh & Wainwright, 2017;
Zhang & Zhang, 2012). The sisVIVE method imposed the RIP condition directly on Z to establish
an error bound. However, the restricted eigenvalue (RE) condition (Bickel et al., 2009) is the
weakest condition (van de Geer & Biithlmann, 2009) available to guarantee rate minimax perform-
ance in prediction and coefficient estimation, as well as to establish variable selection consistency
for Lasso penalty. Feng and Zhang (2019) further adopted the RE condition for non-convex
penalty analysis. We then state the conditions on the design matrix Z of equation (16) in the
following. Define restricted cone C(V*; &) = {u: ||uy~ ||y < &lluye~ ||} for some & > 0 that estimation

error @ — a* belongs to. The restricted eigenvalue K¢ for Z is defined as K¢ = K¢(V*, &):=
inf (|| Zull, /(| ull,7'/?) : u € C(V*; &)} and the RE condition refers to the condition that K¢ for Z
u

should be bounded away from zero.

Lemma 2 (RE condition of Z). Under Assumptions 1-3, there exists a constant &€
(0, 1711 /Pyell1) and a restricted cone C(V*; &) defined by chosen ¢ such
that K% > 0 holds strictly.

Lemma 2 elaborates that the RE condition on Z holds without any additional assumptions on Z,
unlike the extra RIP condition for sisVIVE. Moreover, this restricted cone is invariant to scaling,
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thus indicating the accommodation of many weak IVs. These two features suggest the theoretical
advantages of penalized methods (10) over existing methods.
Next, we discuss the selection of valid IVs by comparing the local solution of equation (22) with

the oracle (moment-based) counterpart. Define @2, = 0 and
L = (ZyeZop ) Zy Y or G = (Zhe Zye ) [ZL (Y — DETS)), (23)
where g1 = [DT(P; — P,..)D] ' [D"(Pz — Pz,..)Y] and the two versions of @ ayy. are equivalent.

Notice this ,BTSLS is not for the final treatment effect estimation, but to illustrate the selection stage
consistency only. To this end, we show the supremum norm of R” = ZT(Y — Za"")/n is bounded

by an inflated order of O(y/log py+/n). Denote D= (Pz — Pz,.)D and én =Z).(Pz - Pz,.)Zy~ /n,
we derive the following lemma.

Lemma 3  Suppose Assumptions 1-4 hold and let

_ b ||Qn7y* Il oo /logpw. (24)
n n

J’V* Qnyv

Then, the supremum norms of residual R°" are bounded by {; i.e.

2 T
ZyD D¢
||| s¢ (25)
® D D
n o

Zy.é
IRl < | =2
n

holds with probability approaching 1.

Based on Lemmas 2 and 3, we consider the set B(/,p)={a in equation (22):1> ¢,
p>KZ(V*, €) Vv 1}, in which (is defined in equation (24) and ¢ is guaranteed by Lemma 2, as a
collection of all local solutions @ computed in equation (22) through a broad class of MCP under
a certain penalty level 1 and convexity 1/p. Given that the computed local solutions in practice are
through a discrete path with some starting point (see online supplementary Appendix A3), we fur-
ther consider the computable solution set By(Z, p), introduced by Feng and Zhang (2019), i.e.

Bo(4, p) = {@: @ and starting point @' are connected in B(4, p)}. (26)

The connection between By (4, p) and B(4, p) is that 3 @/ € B(4, p) with penalty level A0 increasing
with the index /=1, 2, ..., such that @® —a* € C(V*, &), a=a" for large enough [/ and
@ — a1, <aoi, where ay is specified in online supplementary Lemma A3 of Appendix B7.
Thus, By(4, p) is a collection of approximations of  in all DGPs.

Denote

Blas(ﬂTSLS) DT(PZ - PZW )f _ DIPZLEJ_ ;
o D'(Pz-Pz,.)D D[Pz D,

Five = Voo + (20 Zyes ) 2L Zoppe.

Also, let é; and Bias /ﬁ’CTSLS be defined as P, version of én and Bias(B1°Y%). Then, we provide the

or or
asymptotic result of selection consistency of WIT.
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Theorem 2  (Selection consistency). Specify separation conditions x(n) and x“(n) in
Assumption § as

logpv , pv 19l . s,
) = \SBP P TSR Bias (B 17 s (27)
}’** ny**
s 14 V Ts
T,

zC
log |Z. z 7 oo .
iy = (14 o[BI B JOLIo | g ersisy gy, s)

n *T *
7. K0V,

where Ty — 0 as# — oo. Suppose Assumptions 1-6 hold and consider com-
putable local solutions specified in equation (26). Then
GMCP — aremin @y,  Pr(V= V¥, @MP =) 51, (29)
a€B(4,p)

In Theorem 2, T is similar to a standard rate \/logp/7 in penalized linear regression, while T,
and T3 are the additional terms that only play a role in the many IVs context and vanish fast in the
finite strong IVs case (see Corollary 1). This result is new to the literature.

Proposition 2 Under the same assumptions of Theorem 2, if there does not exist a dom-

. . 2 1/2 x1/2 x1/2 x1/2
inantscaledyf,ie. 1Q, 7rllo/1Q, ¥lli=0(1Q, 7=11/(Pv11Q, ),
then T, — 0.

Proposition 2 shows that T is limited in the general case where dominant scaled y; does not
exist. For example, if we assume Q, =TI and p}. = C1,,,, where C is a constant or diminishing
to zero, then |7} lle/ 7511 = o175 111/Pv+) = o(Cpy+/py<) = 0(C) holds and it follows that

Tz — 0.
Proposition 3  (Approximation of Bias(ﬁE,SLS)). Let s = max(u,, py-). Under Assumptions
1-4, we obtain

2
ElBi »TSLS — & 2% _ 2’1“;1 -1 . 30
[Bias(for )] o} ((ﬂn +ov) (w, + py)’ +ol™) (30)

Remark 7  The rate of concentration parameter u, will affect T3 through |Bias(8I5%

)| in
the many IVs setting. Suppose Assumption 4 holds, that x, LY Uon, the leading
Oy Voyx

0_31,“0‘*"271;*

term in equation (30) is < Z—g for moderate z, since 0 < v,,, <1 while

to could be larger than 1. While in the many weak IVs setting (Chao &
Swanson, 2005; Hansen et al., 2008; Newey & Windmeijer, 2009),

yn/n—p> 0 and the leading term in equation (30) becomes 05,7/0%. Thus, the

many weak [Vs setting imposes some difficulty (a higher T3) for selecting valid
IVs in Theorem 2.

The following theorem describes the asymptotic behaviour of the WIT estimator for many valid
and invalid IVs cases by combining Theorem 1 and invariant likelihood arguments in Kolesar
(2018). We further denote two statistics

1 1
S=E(Y, D)"Mg(Y, D), T=;(YL,DL)TMZL(YL,DL) (31)
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as the estimates of the covariance matrix of reduced-form error Q@ = Cov(e + f*n, ) and a variant
of concentration parameter, respectively Also, let mmay = Amax (S T), 21, = max(mmax — Py /1, 0)
and Q= S+ — T (T — =L~ 4a™), where a= (""", 1) and || is the determinant
of X.

n— Pvt* /n aTS’

Theorem 3  Under the same conditions as in Theorem 2, we obtain:

(a) (Consistency): ¥'T 5 £ with &y = 1:7”_” +o0,(1).
(b) (Asymptotic normality): va(B¥™™ — )% A(0, i3 [02#0"‘1?‘}”(17_11)%@”)
(c) (Consistent variance estimator):
— b"Qb(i, + py/n) Os \!
WIT nt Dy _ s
Varph = === (05822 i)

p 2 Upva*(l _Upv*)
— + —FF—X
Ho |: Mo 1-— prer = Upy | | H]

where b= (1, — 2¥') and Os = b

Notably, when the number of invalid IVs py~ is a constant the variance estimator above is re-
duced to the one that Bekker (1994) derived for the typical many IVs case. Hansen et al. (2008)
showed that it is still valid under many weak IVs asymptotics.

3.3 Special cases in low and high dimensions

The values of x(n) and x“(n) outlined in Theorem 2 provide the general formulae to confirm
Assumption 5. In this subsection, we discuss some representative cases in low and high dimensions
and verify that Assumption 5 holds.

3.3.1 Finite p case

First, we show that the WIT estimator is a more powerful tool than the existing methods requiring
the majority rule (Kang et al., 2016; Windmeijer et al., 2019) also under the finite number of 1Vs
with a mixture of strong and weak IVs settings. WIT achieves the same asymptotic results as
Windmeijer et al. (2019) under more relaxed conditions. Specifically, under finite IVs,
Assumption 1 can be reduced to Assumption 1’ as follows.

Assumption 1’ (Finite number of IVs). py~ > 1 and py» > 1 are fixed constants, and
py= + py- =p <mn.
In the finite IVs case, the T, and T3 terms in Theorem 2 for selecting
valid IVs go to zero fast and the required separation rate reduces to
x(n) < n~1/2. We present the asymptotic properties for the WIT estimator
here. Consider the following mixed IV strengths case. Let y; = Cn™7 for
j=1,2, ..., p, 7y» =argmax, {r, jeEVY, 7. = argmax,}{t,- :j€Z.}, and
vz, = argmax,{7;:] € Z¢}, where ¢ #C.

Corollary 1  (Finite p with Mixture of Strong and Weak IVs). Suppose Assumptions 1/,
2-4, and 6 hold. Additionally, we assume each IV is at least a weak one
such that i =0(n) and 0<7;<1/2 for j=1,2, ..., p. For any fixed
minjeye o] > 0, if 7 + 277, <1, 7 + 277, <1 and 77, + 17, <2/3, then

we have
(a) (Selection consistency): aM<? —argm1n||a||0, Pr(V = V*, aMCP =gor)
“2eBy (), p)
P

— 1.
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(b) (Consistency & equivalence of WIT and TSLS): BWIT—p> B with
kliml =1+ Op(l).

(c) (Asymptotic normality): /72(B¥'T — ¥ 4 N0, 5t a?).

€
(d) (Consistent variance estimator):

b Qb(/‘n + by /n)

Var(3¥1T) =

2
<Qsﬂzz - T

_:un

where b= (1, - %) and Os = Ty

Corollary 1 addresses a scenario where the violation of validity, a7, is held constant and thus is
of the same order when 7; = 0, or exceeds its strength parameter, y7, for j € V7. This scenario fre-
quently arises when conducting robust estimations, particularly in circumstances that inadvertent-
ly incorporate weakly relevant but strongly invalid IVs, or when there is no prior information on
the candidate IVs set. Dealing with these situations effectively is a crucial component of robust
statistical analysis.

Conversely, as noted by an anonymous reviewer, experienced researchers often select IVs
that are argued to be both relevant and valid. A violation of IV validity could happen among
relatively strong IVs. This corresponds to a scenario where the ratio of o7 /y; is small. In the
following proposition, we demonstrate that the WIT estimator can effectively manage cases
where of [yF =o(1).

Proposition4  (Finite p with o /y7 = 0(1)). Suppose Assumptions 1',2, 3, and 6 hold, and
Assumption 4 ﬁolds for each DGP in Q. Each y/ is at least a weak IV such
that ¥ =O(n"") and 0<7;<1/2 for j=1,2,...,p and satisfy y; >
max O(n~1/2 yi/og) for wvalid le€V*. Additionally, we suppose
jeve
miney |ocf| > O(n~1/2), o /77 = o(1). Under these conditions, conclusions
(a) to (d) in Corollary 1 remain valid.

Proposition 4 gives the desired asymptotic results for the WIT estimator for DGPs in the
o} /7; = o(1) scenario, which aligns with the aforementioned case that some researchers may
pick relatively strong IVs in the design phase, and true of to satisfy the separation condition
in Assumption 5. It only requires that |y| > mf O(n~V ¥ /o), which means the valid IVs’
strength signals are stronger than the rate of i 112 over a*/y* It can be easily implied from
this condition that a smaller value in ratio of ¢ to y; helps to reduce the needed strength signal
7] of the valid IVs. Therefore, yj = o(yf) for [ € V* and j € V" is a sufficient condition to verify it.
For the second partin Assumption S: |&| > k°(n) forj € {j: of /] = € # ¢} will hold automatically
under o7 /77 = o(1). Table 1 subsequently illustrates a simplified representative example featur-
ing only 4 IVs, two of which are valid, and demonstrates the rates of x(n) and x°(n) in true and
transformed DGPs.

As a result, Corollary 1 and Proposition 4 provide easily interpretable examples of common
DGPs across two distinct scenarios. These examples affirm the validity of Assumption §, facilitat-
ing a more straightforward understanding for practitioners.

3.3.2 High-dimensional (many IVs) case

Next, we consider a common scenario (Andrews et al., 2018; Chao & Swanson, 2005) with a large
nurnber (can grow with 7) of individually weak instruments, where y; = O(y/logp/n'~?) for
j=1,2, ..., p, and some small enough ¢ > 0 such that logn/7n™° < o to aV01d an exploded vari-
ance in the outcome variable Y;. Regarding invalid IVs, we assume the same rate of

|aT}U* lmin = O(\/ logp/n1—‘5).
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Table 1. lllustration of separation condition in case of finite p with o /y; = o(1)

Coefficients Thresholds
a* 0 0 a; o} K(n) n1/2
: v % % 74 - -
as 7 %3 0 oy =7 c3 K (n) n1/2
ac Y- ca 73 Ca al -y 0 K% (n) n1/2

Note. This example illustrates a scenario with four IVs, where the first two are valid, c3 = a3} /75, c4 = /74, and ¢1 # c;.
The first two rows represent the true DGPs. The last two rows, & and x°(n), correspond to the transformed DGPs
according to equation (8) and the threshold defined in the separation condition: Assumption 5. The corresponding x“ ()
has been simplified through the proof presented in Proposition 4. [Vs = instrumental variables; DGPs = data-generating
processes.

Consequently, the separation condition x(#) is reduced to:

logpr . pv 1075l o rais log o
)= [EPY g P TV e Bias B 55 o = O 2B
7 Q¥

as per Proposition (2). This satisfies the first part of Assumption 5, that is, |@}: | i, > %(72). The se-
cond part of Assumption S, |&| > k“(n) for j € {j: o /7] = ¢ # ¢}, can be confirmed according to
equation (8),

@1 =10} = e}l = | = el - 1 = O(VIogp/n7), (32)

where |¢ — c[ has the same order of & /yf < O(1) for j € V. The threshold of x°(#) in equation (28)
is now specified as

) ToglZd 1Tl 1075 | . - .
K (n) = (1 +¢) g,', '+%.7T:I; + [Bias(Be, S0 175l
7. Qi (33)

- log |Z,|
= ,l—n .

Therefore, the second part of Assumption 5 holds as well.
We summarize the above discussions as the following proposition.

Proposition S Suppose Assumptions 1-4 and 6 hold. If we assume the uniform rate of y; =
af = O(y/logp/n'=9) for j=1,2, ...,p , I € Vi and small enough 6> 0
such that log7/n7% < 00, then Assumption 5 is satisfied and the results of
Theorems 3 and 4 hold consequently.

4 Numerical simulations

In this section, we conduct numerical studies to evaluate the finite sample performance of the pro-
posed WIT estimator. In the design of the simulation experiments, we consider scenarios corre-
sponding to different empirically relevant problems.

We consider the same model in Section 2,

Y=Dp*+Za"+¢, D=Zy +y.
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Throughout all settings, we fix true treatment effect f*=1. Z is the nXxp potential

IV matrix and Z; i'i&d'/\/’(O, %), where EIZ-/=O.3 and )ZIZ-k=O.3|j—/e|O'8 for i=1,...,n

and k,j=1,...,p. Denote e=(cy, €2, ...,¢,)" and g=(n;, 1y, -..,n,)" and generate

(e, ;)" i'i&d'/\/(O, (;% O )). We let 6. = 0.5 and corr(e;, ;) = 0.6 in all settings but vary 0% to
€, 7

get different concentration parameters concerning strong or weak IVs cases.

We compare the WIT estimator with other popular estimators in the literature. Specifically,
sisVIVE is computed by R package sisVIVE; Post-Alasso (Windmeijer et al., 2019), TSHT,
and CIIV are implemented using codes on Github (Guo et al., 2018; Windmeijer et al., 2021).
TSLS, LIML, oracle-TSLS, and oracle-LIML (the truly valid set V* is known a priori) are also
included. Regarding our proposed WIT estimator, the modified Cragg-Donald (MCD) tuning
strategy is implemented to determine 1, and we fix p = 2. In the iterative local adaptive majo-
rize-minimization (I-LAMM) algorithm, we take . = 10~ and 6; = 10~ as the tolerance levels.
We report results based on 500 simulations.

We measure the performance of all estimators in terms of median absolute deviation
(MAD), standard deviation, and coverage probability (CP) based on 95% confidence inter-
vals. Moreover, we provide measurements on the estimation of a* and IV model selection.
Specifically, we measure the performance of invalid IVs selection by false positive rate
(FPR) and false negative rate (FNR). To be concrete, denote the number of incorrect selec-
tions of valid and invalid IVs as FP and FN, respectively, and the number of correct selections
of valid and invalid as TP and TN, respectively. Thus, FPR =FP/(FP +TN) and
FNR = EN/(EN + TP).

Here, we present a replication of the simulation design considered in Windmeijer et al. (2021)
and its weak IVs variant:

Case 1: p* = (0.421)" and a* = (09, 0.4, 0.25)".
Case 2 : y* = (0.1551)" and a* = (09, 0.4¢, 0.26)".

We now vary sample size N = 500 to 1,000 and fix 6, = 1 to strictly follow their design. Between
them, Case 1 corresponds to the exact setting, while Case 2 scales down the magnitude of y* to
introduce small coefficients in the first-stage.

Table 2 shows the results. In Case 1, CIIV outperforms TSHT because CIIV can utilize available
information better (Windmeijer et al., 2021, Section 7). The WIT estimator performs similar to
CIIV and approaches oracle-LIML. sisVIVE and Post-Alasso fail again due to a lack of majority
rule. In Case 2, scaling down the first-stage coefficients causes some problems for CIIV and

TSHT, since the first-stage selection thresholding o,/2.01logp/n =0.111 < 0.15, which might
break the plurality rule numerically. TSHT and CIIV perform poorly when N = 500 and improve
when N =1, 000 when the issue of violating the plurality rule is mitigated. Among penalized
methods, sisVIVE and Post-Alasso mistarget and perform like TSLS because an additional require-
ment for sisVIVE (14) and majority rule fail simultaneously. Distinguished from them, the WIT
estimator outperforms with acceptable MAD when N = 500. The FPR and FNR improve when
the sample size increases.

More simulation results, including comprehensive comparisons in various situations, are pro-
vided in online supplementary Appendix AS.

5 The effect of BMI on DBP

This section illustrates the usefulness of the proposed WIT estimator for the method of Mendelian
Randomization. We implement the WIT estimator to obtain an estimate of the causal effect of BMI
on DBP and compare it to the other estimators, OLS, sisVIVE, Post-Alasso, TSHT, and CIIV. This
comparative analysis is designed to exemplify the efficiency and robustness of the WIT estimator in
various research scenarios.
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Table 2. Simulation results in low dimension: a replication of experiment (Windmeijer et al., 2021)

Case Approaches N =500 N =1,000
MAD CpP FPR FNR MAD CP FPR FNR
1 TSLS 0.436 0 - - 0.435 0 - -
LIML 0.729 0 - - 0.739 0 - -
oracle-TSLS 0.021 0.936 - - 0.014 0.942 - -
oracle-LIML 0.021 0.932 - - 0.014 0.944 - -
TSHT 0.142 0.404 0.398 0.150 0.016 0.924 0.023 0.004
ClIv 0.037 0.710 0.125 0.032 0.017 0.894 0.031 0.002
sisVIVE 0.445 - 0.463 0.972 0.465 - 0.482 0.999
Post-Alasso 0.436 0 1 0 0.435 0 0.999 0
WIT 0.036 0.708 0.121 0.099 0.016 0.910 0.020 0.027
2 TSLS 1.124 0 - - 1.144 0 - -
LIML 1.952 0 - - 1.976 0 - -
oracle-TSLS 0.060 0.936 - - 0.044 0.942 - -
oracle-LIML 0.056 0.948 - - 0.042 0.962 - -
TSHT 0.532 0.058 0.342 0.457 0.155 0.660 0.310 0.208
CIIV 1.213 0.224 0.337 0.670 0.100 0.574 0.300 0.426
sisVIVE 1.101 - 0.392 0.936 1.175 - 0.428 0.996
Post-Alasso 1.112 0 0.945 0.010 1.029 0 0.652 0.205
WIT 0.102 0.634 0.198 0.220 0.047 0.898 0.051 0.064

Note. CP = coverage probability; FPR = false positive rate; FNR = false negative rate; MAD = mean absolute deviation.

5.1 Data description

In Mendelian Randomization genetic markers, called single nucleotide polymorphisms (SNPs),
function as IVs for the identification and estimation of causal effects of modifiable phenotypes
on outcomes (Von Hinke et al., 2016). This research design utilizes the random distribution of al-
leles at conception (Locke et al., 2015).

Nonetheless, SNPs can be invalid IVs. This is primarily due to pleiotropy, which refers to the
potential of genetic variants to be associated with multiple phenotypes, but can also be due to in-
fluences such as linkage disequilibrium and population stratification. Unfortunately, these viola-
tions are typically unidentified prior to their selection. Furthermore, the correlation between
SNPs and treatments is often weak, and so we are dealing with the problem of potentially many
weak instruments.

We analyzed data from 105,239 individuals from the UK Biobank (http:/www.ukbiobank.ac.
uk/) to investigate the effect of BMI on DBP. We use the data as in Windmeijer et al. (2021), with a
slightly smaller number of individuals due to withdrawals from the study. Following Windmeijer
etal. (2019) and Windmeijer et al. (2021), we used 96 SNPs as potential IVs for BMI. To account
for skewness, we applied log-transformations to both BMI and DBP. We consider the same model
specification detailed in Section 8 of Windmeijer et al. (2021). The model also included age, age
squared, and sex as explanatory variables, along with 15 principal components of the genetic re-
latedness matrix. The corresponding data pre-processing code can be found in the online
supplementary Appendix A6.

5.2 Result and analysis

Table 3 provides the estimation results of the effect of log(BMI) on log(DBP).
The OLS estimate of 0.206 is potentially severely biased due to endogeneity issues, such as re-
verse causality or latent confounders.


http://www.ukbiobank.ac.uk/)
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http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae025#supplementary-data
http://academic.oup.com/jrsssb/article-lookup/doi/10.1093/jrsssb/qkae025#supplementary-data

J R Stat Soc Series B: Statistical Methodology 19

Table 3. Empirical results, the effect of log(BMI) on log(DBP)

B SE(B) 95% CI #Valid VsV # Relevant IVs selected p-value Sargan Test
OLS 0.206 0.002 (0.202, 0.210) N.A. - N.A.
TSLS 0.087 0.016 (0.055,0.119) 96 - 2.05e-19
TSHT* 0.087 0.016 (0.055,0.119) 96 - 2.05e-19
TSHT 0.098 0.016 (0.066,0.130) 61 62 5.29e-14
CIIV* 0.140 0.019 (0.103,0.177) 83 - 0.011
CIIvV 0.174 0.020 (0.135,0.213) 49 62 0.014
sisVIVE 0.111 N.A. N.A. 76 - 0.064
Post-Alasso  0.163 0.018 (0.128,0.198) 85 - 0.013
WIT 0.123 0.020 (0.083,0.163) 81 - 0.140

Note. Sample size N =105,276; p = 96 potential SNPs (IVs). Two-stage methods were used for both TSHT and CIIV:
these methods first select strong IVs and then pick valid IVs from this subset. TSHT* and CIIV* represent the methods
without employing a first-stage thresholding process. The sisVIVE does not report standard error (SE) or confidence
interval (CI). The symbol ‘= denotes that no first-stage selection was performed, and all the original 96 potential IVs were
directly used. BMI = body mass index; DBP = diastolic blood pressure; IVs = instrumental variables; SNPs = single
nucleotide polymorphisms.

Regarding the IV methods, we first denote TSHT* and CIIV* to indicate the estimation results
without first-stage thresholding. For TSLS and TSHT*, both without first-stage thresholding, they
yield identical estimates of 0.087. However, the near-zero Sargan test p-value strongly rejects the
model, implying TSHT’s inability to detect potentially invalid IVs among weak ones. Despite the
slight improvement of TSHT in discerning invalid IVs through first-stage thresholding, it still
leaves some possibly invalid instruments in the model, as indicated by the slightly increased but
still very small Sargan test p-values.

Compared to TSHT, CIIV identified 13 strong and invalid IVs, leading to an estimate of 0.174
and a Sargan p-value of 0.011. CIIV* detected the same (as CIIV) strong invalid IVs with a similar
Sargan p-value. CIIV* adjusted the estimate to 0.140.

The sisVIVE approach yielded an estimate of 0.111 which is lower than that obtained with the
CIIV method. First, we observe that sisVIVE picks 20 invalid IVs (the highest count among com-
parison methods). Second, a Sargan p-value of 0.064 indicates that it overly penalizes invalid IVs
while missing some true targets. In contrast, the Post-Alasso estimate is equal to 0.163, with the
minimum number of 11 identified invalid IVs, and a Sargan p-value of 0.013.

The WIT estimator produced an estimate of 0.123, markedly lower than that of CIIV (and a
little lower than CIIV*), accompanied by the highest Sargan test p-value of 0.140. The invalid
IVs detected by WIT encompassed all the relevant and invalid IVs identified by CIIV without first-
stage thresholding. Moreover, compared to CIIV*, WIT effectively identified two additional indi-
vidually weak and invalid IVs. It thus significantly improved the Sargan p-value and estimation
while capturing all valid yet weak IVs’ information. In hindsight, sisVIVE penalized too many
weak and valid IVs, leading to a loss in efficiency. Notably, the minimum validity violation
|&MCP| is 0.0014, aligned with the average magnitude of first-stage coefficients. In summary, the
WIT method minimizes the risk of including invalid IVs while fully utilizing all valid IVs.

To summarize, the WIT estimator serves as a powerful tool for estimating treatment effects in
biomedical research using SNPs as potential IVs. Its robustness to invalid and weak IVs makes it
highly suitable for Mendelian Randomization applications, where there are potentially many
weak IVs with uncertain validity.

6 Conclusion

We extended the study of IV models with unknown invalid IVs to allow for many weak IVs. We
provided a complete framework to investigate the identification issue of such models. Sticking to
the sparsest rule, we proposed the surrogate sparsest penalty that fits the identification condition.
We proposed a novel WIT estimator that addresses the issues that can lead to poor performance of
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sisVIVE and Post-Alasso, and can outperform the plurality rule-based TSHT and CIIV.
Simulations and real data analysis support the theoretical findings and the advantages of the pro-
posed method over existing approaches.
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