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A B S T R A C T

Casual mediation analysis (CMA) plays an essential role in various fields of social sciences. However, traditional
models have restrictive parametric settings and strong random assumptions, which can be inflexible due
to general nonlinearity, heterogeneity, and complex noise effects in many applications. Motivated by the
similarities between the CMA and image-to-image translation that were thought to be unrelated initially, this
paper proposes a novel prototype called the Generative Adversarial Mediation Network (GAMN), to explore
the generative learning approach in the context of CMA. Thanks to a new encoding scheme for random terms,
carefully designed partially linear architecture and inherent advantages of the generative learning framework,
GAMN can flexibly handle nonlinear covariate effects and effectively model complex noise and heterogeneous
mediating mechanisms with minimal model assumptions. Thus, when encountering intricate data patterns,
the counterfactuals relating to treatment effects in CMA can be efficiently inferred, providing more promising
mediation results. Experiments conducted on both synthetic and realistic datasets demonstrate that, compared
with state-of-the-arts, GAMN can achieve notably more accurate estimations of out-of-sample predictions and
treatment/mediation effects, which further illustrate the utility and advantages of our method. With the novel
reinterpretations and solid theoretical results, this study also substantially broadens insights into developing
mediation models from a machine-learning perspective.
1. Introduction

Causal mediation analysis (CMA) is a powerful tool for investigating
causal mechanism of treatment [1,2]. It finds applications in various
research fields, such as psychology [3], epidemiology [4] and eco-
nomics [5]. CMA aims to evaluate treatment or intervention effects
on an outcome of interest. This is achieved by disentangling the to-
tal treatment effect into an indirect effect operating through one or
several observed intermediate variables (mediators) and a direct effect
reflecting any impact not captured by the mediator(s).

A typical mediation model comprises a three-variable system in
which a treatment variable (𝑇 ) influences a dependent variable (𝑌 ) via
one or more intermediary variables (𝑀). This configuration gives rise
to both direct (𝑇 → 𝑌 ) and indirect (𝑇 → 𝑀 → 𝑌 ) pathways [6].
Linear regression (LR) is a widely used approach to construct the
system, wherein linear models are employed to estimate the direct
and indirect effects. Corresponding statistical inference methods have
also been established to conduct further mediation analysis [2]. It
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is worth noting that LR-based mediation models primarily focus on
single-level mediation and straightforward linear correlations between
variables. Alternatively, structural equation models (SEM) are em-
ployed to formulate mediation models for more complicated mediation
problems [7]. SEMs allow for the creation of complex and interactive
structures and are especially valuable for conducting multiple-level
mediation analyses [8]. The Bayesian method (BM) represents another
significant approach [9], which incorporates prior information into
analysis, potentially improving estimation efficiency [10,11]. Bayesian
mediation models, by specifying the distribution types of variables,
offer straightforward and precise statistical inference. This imparts
conceptual simplicity and convenience to the mediation analysis pro-
cess [12]. Recently, causal mediation models have been investigated
with relaxed assumptions based on the counterfactual framework. As
unobserved counterfactuals are predicted using a parametric regression
model [13], average treatment/mediation effects are evaluated by com-
paring the observed factual outcomes with the estimated counterfactual
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outcomes. These works formulate flexible frameworks and generalize
existing results for capturing complex mediating mechanisms. It is
noted that conventional mediation models often impose restrictive
parametric settings (e.g., linearity) and strong distribution assumptions
(e.g., homogeneity and normality) to facilitate estimation and hypoth-
esis testing. However, there is a lack of clear theoretical or intuitive
justifications for these convenient assumptions in practice. Conversely,
there are compelling reasons to expect that these assumptions are
frequently violated. For instance, in fields like labor economics [14],
epidemiology [15], and survival analysis [16], the data are sampled
from individuals and essentially determined by personal characteristics,
resulting in substantial high levels of nonlinearity, complexity and het-
erogeneity. This holds particularly true in the context of large datasets.
Consequently, despite their considerable successes, the conventional
methods may be too rigid to accommodate these prevalent intricate
patterns and might be inadequate for many real-world applications.

The generative adversarial network (GAN) is an emerging genera-
tive learning model [17]. GANs have demonstrated remarkable success
in tackling various challenging tasks, primarily within the domain of
image processing, such as image generation [18], image-to-image trans-
lation [19], image restoration [20] and neural style transfer (NST) [21].
GANs consist of two components: a generative model called a generator
and an adversarial model called a discriminator. The generator tries to
capture the distribution of the observations and generate new samples,
while the discriminator evaluates the new samples and distinguish
them from real data. Through a minimax optimization process, wherein
the generator and discriminator continually enhance their respective
capabilities, GANs drive the generator to accurately learn the un-
derlying data distribution. Despite being implicit generative models,
GANs effectively capture distribution characteristics by employing deep
neural networks for both the two components. From the generative
learning perspective, it is noticed that the LR models can be considered
explicit generative models to describe the joint probability involved in
the regression. This feature motivates us to explore the feasibility of
GANs for addressing CMA problems.

To our knowledge, this study represents the first attempt to inves-
tigate CMA using the generative learning approach. We have observed
that in a classical image-to-image translation task [22], conditional
GAN (CGANs) employs facial features (young/aged) as labels and lever-
age deep network architectures to learn the distribution of different
facial images, generating/predicting the appearance of a young man
as he ages. Correspondingly, in CMA, if we conceptualize binary treat-
ment as the ‘‘young/aged’’ label and counterfactual as the desired
generated image, CMA can be reinterpreted as an image-to-image
translation problem. Inspired by this intriguing connection, we re-
frame the conventional mediation model and develop a novel prototype
named generative adversarial mediation network (GAMN) based on
CGAN [23]. Thanks to our new encoding scheme for random terms,
carefully designed network architectures, and inherent advantages of
the generative learning framework, GAMN can flexibly accommodate
nonlinear relationships among variables and effectively model com-
plex noises and heterogeneous mediating mechanisms with minimal
assumptions. Therefore, when encountering intricate data patterns,
GAMN can efficiently estimate counterfactuals and their associated
confidence intervals relating to direct and indirect treatment effects,
bringing more promising and adaptive mediation results than state-
of-the-art methods. Besides the mediation problem in our study, other
benchmark mediation problems can also be addressed following a simi-
lar technique line as presented in this paper. With the novel techniques
and reinterpretations, this study substantially improves the settings of
CMA and represents a significant step toward developing mediation
models from a machine-learning perspective. Theoretical analysis and
encouraging numerical experiments on synthetic and realistic datasets
illustrate the utility and advantages of the proposed model.

The rest of this article is organized as follows. Section 2 briefly re-
2

views the existing benchmark methods for mediation analysis. Section 3 𝑿
presents the methodology, including the motivations of this study,
proposed network models, and some further discussions on our method.
The counterfactual framework for CMA problems is also reviewed at
the beginning of this section. Section 4 provides the theoretical results
for our method. Section 5 conducts extensive numerical experiments on
synthetic and realistic datasets to assess the empirical performance of
the proposed model. Comparisons between the proposed and existing
methods are presented. Section 6 concludes the paper.

2. Existing benchmark methods and counterfactual framework

In this section, we briefly review the existing benchmark mediation
models and present the limitations of traditional methods. Vectors and
scalers are denoted by bold and ordinary letters, respectively. Let 𝑌
be the dependent variable and 𝑇 and 𝑀 be the treatment variable
and mediator, respectively. A typical LR-based mediation model is
formulated by three linear equations [2]

⎧

⎪

⎨

⎪

⎩

𝑌 = 𝛽1 + 𝑐𝑇 + 𝜀1,
𝑀 = 𝛽2 + 𝑎𝑇 + 𝜀2,
𝑌 = 𝛽3 + 𝑏𝑀 + 𝑐′𝑇 + 𝜀3,

(1)

where 𝜀1, 𝜀2 and 𝜀3 are random terms with normal distributions. 𝛽1,
𝛽2 and 𝛽3 are intercept terms, which represent the expected values of
the dependent variables when all the independent variables are set to
zero. The intercept terms are important for improving model fitting
and stability in linear regressions. By plugging the first and second
equations of (1) into the third one, the indirect effect can be measured
by 𝑎𝑏 or 𝑐′ − 𝑐. Ordinary least squares (OLS) [6] and maximum likeli-
hood estimation (MLE) [24] are utilized for estimating 𝑎, 𝑏 and 𝑐. The
mediation analysis can be conducted by statistical inference on 𝑎𝑏 with
confidence intervals (CI) established in these works. Structural equation
model (SEM) is another popular approach. By moving the exogenous
variable 𝑀 to the right side [7,25], the SEM-based mediation model is
given by
{

𝑀 = 𝛽2 + 𝑎𝑇 + 𝜀2,
𝑌 = 𝛽3 + 𝑏𝑀 + 𝑐′𝑇 + 𝜀3 = 𝛽3 + 𝛽2𝑏 + (𝑐′ + 𝑎𝑏)𝑇 + 𝜀3 + 𝑏𝜀2

(2)

here 𝜀2 ∼ 𝑁(0, 𝜎22 ) and 𝜀3 ∼ 𝑁(0, 𝜎23 ). Generalized Least Squares (GLS)
nd MLE are common estimating methods for (2). Compared with LR-
ased methods, SEM can be used to design complex and interactive
tructures and allows for multiple mediators or outcomes, facilitat-
ng complex multiple-level mediation analysis. BM-based alternatives
tilize the Bayesian rule to estimate the parameters [26,27]. Since
he distributions of variables are specified, mediation analysis in the
ontext of (1) or (2) is straightforward.

Despite their effectiveness, the above methods typically impose
estrictive parametric settings (e.g., linearity) and strong distribution
ssumptions (e.g., homogeneity and normality) to benefit estimation
nd statistical inference. Recent studies, such as [28–30], have high-
ighted that mediation analysis data often exhibit significant nonlin-
arity, complexity, and heterogeneity, especially when dealing with
arge-scale datasets. This suggests that the conventional methods may
ot be suitable for many real-world applications.

The total, direct, and indirect (or mediated) effects have their
wn causal interpretations under the counterfactual framework [31].
ounterfactual-based methods have been further developed and proved
ffective for CMA problems [32]. Following the notations in [33], 𝑿
enotes pre-treatment covariates, and 𝑡∗ and 𝑡 indicate treatments for
ediator and outcome, respectively. 𝑌 (𝑡,𝒎) represents the potential

utcome when treatment is set to 𝑡 under fixed mediator 𝑴 = 𝒎.
o identify the path-specific direct and indirect effects, the following
tandard unconfoundedness assumptions are required:

(I) conditional independence of the treatment: {𝑌 (𝑡,𝒎),𝑴(𝑡∗)} ⟂ 𝑇 ∣

,
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Table 1
List of notations

Notations Description Notations Description

𝑌 Outcome variable △𝑇→𝑌 Direct effect
𝑇 Treatment variable △𝑇→𝑴→𝑌 Total indirect effect
𝑀 (𝑴) Mediator variable (vector) △𝑇→𝑀𝑝→𝑌 Indirect effect implemented through the 𝑝th mediator 𝑀𝑝

𝑿 Covariant vector 𝒁𝑀 ∼ 𝑁((0, 1)𝑑𝑀 ) 𝑑𝑀 -dimensional normally distributed random variable
E Mathematical expectation 𝒁𝑌 ∼ 𝑁((0, 1)𝑑𝑌 ) 𝑑𝑌 -dimensional normally distributed random variable
𝐺𝑀 Generator of the mediator block 𝐷𝑀 Network parameters of 𝐷𝑀
𝐺𝑌 Generator of the outcome block 𝐷𝑌 Network parameters of 𝐺𝑀
𝜃𝐺𝑀

Network parameters of 𝐺𝑀 𝜃𝐷𝑀
Network parameters of 𝐷𝑀

𝜃𝐺𝑌
Network parameters of 𝐺𝑌 𝜃𝐷𝑌

Network parameters of 𝐷𝑌
𝑝1 ≐ 𝑝2 two density functions 𝑝1 and 𝑝2 are the same 𝐴 ⟂ 𝐵 ∣ 𝐶 Independence of 𝐴 and 𝐵 conditional on 𝐶
𝑝𝑍 Density of random variable 𝑍 D𝐽𝑆 Jensen–Shannon divergence
𝑝𝑔 The density of the generated samples D𝐾𝐿 Kullback–Leibler divergence
𝑝𝑑𝑎𝑡𝑎 The density of observation data D𝑇𝑉 Total variation
𝜂 learning rate  ,  ,  value domains of 𝑋, 𝑌 , 𝑇
(II) conditional independence of the mediator: 𝑌 (𝑡,𝒎) ⟂ 𝑴(𝑡∗) ∣
𝑇 ,𝑿,

where 𝐴 ⟂ 𝐵 ∣ 𝐶 indicates the independence of 𝐴 and 𝐵 conditional
on 𝐶, and the treatment value 𝑡 and 𝑡∗ can be set as different, but not
necessary. With unconfoundedness assumptions, suppose the treatment
value is chosen from candidates 𝑡0 and 𝑡1, i.e., 𝑇 ∈ {𝑡0, 𝑡1}. There
xist four potential outcomes driven by different paths: 𝑌 (𝑡0,𝑴(𝑡0)),
𝑌 (𝑡1,𝑴(𝑡1)), 𝑌 (𝑡0,𝑴(𝑡1)), and 𝑌 (𝑡1,𝑴(𝑡0)). Obviously, it is impossi-
ble to impose both 𝑡0 and 𝑡1 on the same individual simultaneously.
Either 𝑌 (𝑡0,𝑴(𝑡0)) or 𝑌 (𝑡1,𝑴(𝑡1)) can be observed. 𝑌 (𝑡0,𝑴(𝑡1)) and
𝑌 (𝑡1,𝑴(𝑡0)) cannot be observed. The observed one is called factual,
and the unobserved ones are called counterfactuals. Without loss of
generality, the direct effect is formulated by changing 𝑡 from 𝑡0 to 𝑡1.
Accordingly, the direct effect and total indirect effect are given as

△𝑇→𝑌 = E[𝑌 (𝑡1,𝑴(𝑡0)) − 𝑌 (𝑡0,𝑴(𝑡0))], △𝑇→𝑴→𝑌

= E[𝑌 (𝑡1,𝑴(𝑡1)) − 𝑌 (𝑡1,𝑴(𝑡0))], (3)

where E denotes the mathematical expectation. Moreover, with (2), (3)
can be specified as

△𝑇→𝑌 = [𝛽3 + 𝑏(𝛽2 + 𝑎𝑡0) + 𝑐′𝑡1] − [𝛽3 + 𝑏(𝛽2 + 𝑎𝑡0) + 𝑐′𝑡0] = (𝑡1 − 𝑡0)𝑐′,

△𝑇→𝑴→𝑌 = [𝛽3 + 𝑏(𝛽2 + 𝑎𝑡1) + 𝑐′𝑡1] − [𝛽3 + 𝑏(𝛽2 + 𝑎𝑡0) + 𝑐′𝑡1] = (𝑡1 − 𝑡0)𝑎𝑏.(4)

(4) is consistent with the results of the conventional linear regression
models, illustrating the effectiveness of the counterfactual framework.
In the counterfactual framework, the strict linear and random assump-
tions are unnecessary. Therefore, deep learning techniques offer the
potential to achieve highly accurate counterfactual predictions with
minimal assumptions. This study aims to design a novel CMA model
using the GAN approach under the counterfactual framework. In Ta-
ble 1, we also present a list of explanations for the main symbols in
this paper.

3. Methodology

3.1. A brief review on benchmark GANs and our key motivations

In this section, we first present a brief overview of benchmark GAN
models. We also present our key motivations and elaborate how to solve
the problem using CGAN techniques.

3.1.1. A brief review on benchmark GANs
The original version of GAN, initially introduced by Goodfellow,

is a type of unsupervised deep learning model [17]. It comprises two
components: the generator and the discriminator. The generator is to
produce samples that exhibit a statistical similarity to the training data.
The generator, denoted as 𝐺, is a differentiable function formulated by
a neural network that operates on a low-dimensional random variable
𝑍 characterized by a density function 𝑝𝑍 . 𝑍 is typically referred to
3

as ‘‘noise’’ and is commonly distributed as Gaussian or uniform in
most cases. Consequently, the generator 𝐺 is associated with a natural
density, denoted as 𝑝𝑔 . To learn the generator over data 𝒚 (with density
denoted by 𝑝𝑑𝑎𝑡𝑎), the discriminator 𝐷 is also formulated by a neural
network attempts to distinguish between the observations as ‘‘real data’’
or ‘‘generated data’’ by outputting the probability that 𝐺(𝑍) came
from 𝑝𝑑𝑎𝑡𝑎 rather than 𝑝𝑔 . 𝐷 is trained to maximize the probability of
assigning the correct label to both training data and generated data.
Simultaneously, 𝐺 is trained to generate the samples that are following
the distribution 𝑝𝑑𝑎𝑡𝑎 of real data. 𝐺 and 𝐷 play a two-player minimax
game with objective function 𝑉 (𝐺,𝐷) to update themselves

min
𝐺

max
𝐷

𝑉 (𝐺,𝐷) = E𝒚∼𝑝𝑑𝑎𝑡𝑎 [log𝐷(𝒚)] + E𝒛∼𝑝𝑍 [log(1 −𝐷(𝐺(𝒛)))]. (5)

The training objective involves minimizing the JS divergence (Jensen–
Shannon divergence) between the real data and generated data [34].
Optimal generator and discriminator correspond to the solution of (5).
GANs have evolved significantly since their inception. To make GANs
applicable to various complex tasks, many important variants have
been proposed.

Information Maximizing Generative Adversarial Network (InfoGAN)
extends the basic GAN framework by explicitly modeling and con-
trolling the latent representations of generated data [35]. InfoGAN
introduces an additional objective during training, which encourages
the generator to learn disentangled and interpretable representations
in the latent space. InfoGAN has been applied to the tasks where
understanding and controlling specific attributes or characteristics of
generated data are crucial, for example, facial expression manipula-
tion [36] and data augmentation [37]. Another popular variant is
Cycle-Consistent Adversarial Network (CycleGAN). CycleGAN is first
designed for image-to-image translation tasks, where there are no
paired training examples [38]. Traditional methods typically require
a one-to-one correspondence between images in the source and target
domains, which can be impractical or expensive in many cases [19]. In
contrast, CycleGAN introduces a cycle consistency constraint, ensuring
that the identity of images is preserved during translation, and can
perform image translation between two different domains without such
pairs. This makes it highly versatile for tasks, such as style transfer [39],
domain adaptation [40] and creative image transformations [41].

While GANs offer a promising framework for generating data, the
training of GANs is difficult and often unstable due to the complexities
of their min–max optimization problems that cannot be easily resolved
by simply altering the network architecture. To address this issue, many
benchmark variants have been proposed by redefining the objective
function. In stead of JS divergence, Wasserstein GAN (WGAN) adopts
the Wasserstein distance to quantify the dissimilarity between the
real data distribution and the generated data distribution [42]. The
Wasserstein distance offers a continuous and smooth measure of dissim-
ilarity. This smoothness ensures that meaningful gradients are available
throughout the training process, resulting in more stable training and

helping to prevent issues like mode collapse. To further ensure that
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Fig. 1. Application of CGAN in image-to-image translation task: changing the facial attributes.
the Wasserstein distance is well-defined, WGAN with gradient penalty
(WGAN-GP) adds a gradient penalty term to the loss function [43].
This encourages smoother behavior in the discriminator, promoting
more reliable and consistent training. Instead of binary cross-entropy
loss, Least Square GAN (LSGAN) utilizes least squares loss [44]. This
adjustment yields several benefits, such as enhanced training stability
and the generation of visually appealing samples [45].

The aforementioned GAN variants introduce diverse innovations
and adaptations to tackle specific challenges in generative modeling.
The choice of variant depends on the task requirements and the desired
characteristics of the generated output. [46,47].

3.1.2. CGAN and our key motivations
When both the generator and discriminator are conditioned on

auxiliary information 𝒙, the GAN framework can be extended to a
conditional version, referred to as CGAN. 𝒙 can take various forms,
including class labels or data from other modalities [23]. Specifically,
the generator uses the noise vector 𝒛 and auxiliary information 𝒙
to synthesize fake sample 𝐺(𝒛,𝒙) with distribution 𝑝𝑔(𝒚|𝒙), while the
discriminator classifies whether the extended observation (𝒚,𝒙) comes
from real data 𝑝𝑑𝑎𝑡𝑎(𝒚|𝒙). For CGAN, the minimax optimization for
training CGAN is given by

min
𝐺

max
𝐷

E𝒚∼𝑝𝑑𝑎𝑡𝑎 [log𝐷(𝒚|𝒙)] + E𝒛∼𝑝𝑍 [log(1 −𝐷(𝐺(𝒛|𝒙)))]. (6)

As auxiliary information is incorporated into the learning process,
samples with different class labels can be generated. CGAN and its
variants have been widely used for text-to-image synthesis [48], image-
to-image translation [22] and neural style transfer tasks [38], where
predictions of image data are needed. We remark that WGAN, WGAN-
GP and LSGAN have their conditional versions, and we shall develop
our GAMN using CGAN techniques.

The key motivation for this paper. For the learning tasks relating
to complex conditional distributions, recent studies have shown that
CGAN can achieve remarkable success in image-to-image translations.
The image-to-image translation is to change a particular aspect of a
given image to another, e.g., changing a landscape photograph into
paintings of famous artists [38], or changing the facial appearance of
a person [22]. As shown in Fig. 1, when given an image of a young
man, the task is to generate an image of his aged appearance, for which
a young-to-old mapping need to be learned. For this task, there are
two main difficulties. First, it involves estimating high-dimensional and
complex conditional distributions, a flexible enough network must be
designed to learn the patterns of the images. Second, the young man
has not become old yet, we need to ‘‘predict’’ his aged appearance. With
deep network structures, CGAN can efficiently overcome the difficulties
by setting the facial feature young/aged as a label in training. Fig. 1
also shows the intuitively amazing translation results by CGAN.

We emphasize that there are interesting similarities between image-
to-image translation and counterfactual estimation in CMA. In image-
to-image translation, the goal is to generate images of aged faces
according to ‘‘young/aged’’ label, while in counterfactual estimation,
the objective is to characterize the distribution of a dependent variable
given a specific treatment. In essence, both tasks involve estimating
conditional distributions of the variables of interest. If the binary
treatment, counterfactual, and covariants are regarded as analogs to the
4

‘‘young/aged’’ label, desired generated image, and the codes for other
facial characteristics (such as hair color), respectively, the counter-
factual estimation problem can be reinterpreted as an image-to-image
translation problem. Therefore, the GAN approach can be reasonably
employed to develop novel CMA models, which implies the advantages
of GAN such as flexibility to describe nonlinearity and high capacity
to approximate complex distributions, can be leveraged to achieve
more promising mediation results, thereby overcoming the limitations
of traditional methods.

3.2. GAMN

3.2.1. GAMN for single mediator case
We first consider the model with one mediator. It is noted that 𝑿, 𝑌 ,

𝑀 , and 𝑇 are utilized to represent the variables involved in the general
mediation models (1) and (2). To avoid any potential confusions,
we emphasize that (𝑌𝑖,𝑀𝑖, 𝑇𝑖,𝑿𝑖) denote the values of (𝑌 ,𝑀, 𝑇 ,𝑿)
corresponding to the 𝑖th individual within the sample dataset used for
modeling, and these values are specifically employed for calculation
and estimation purposes. Assume that 𝑛 samples (𝑌𝑖,𝑀𝑖, 𝑇𝑖,𝑿𝑖) (𝑖 =
1, 2,… , 𝑛) are used for training, where 𝑿𝑖 ∈ R𝑑 , 𝑇𝑖 ∈ {𝑡0, 𝑡1}, 𝑌𝑖 and
𝑀𝑖 are in real space. For given 𝑖 and fixed 𝑿𝒊, either 𝑌𝑖(𝑡0,𝑀𝑖(𝑡0))
or 𝑌𝑖(𝑡1,𝑀𝑖(𝑡1)) can be observed, while 𝑌𝑖(𝑡0,𝑀𝑖(𝑡1)) and 𝑌𝑖(𝑡1,𝑀𝑖(𝑡0))
cannot be observed. In the following, without loss of generality, we
always assume that 𝑡0 and 𝑡1 are the treatments corresponding to the
factual and counterfactual, respectively, which implies 𝑌𝑖(𝑡1,𝑀𝑖(𝑡1)) and
𝑌𝑖(𝑡1,𝑀𝑖(𝑡0)) are the counterfactuals to be predicted. We propose to
learn the distributions of potential outcomes conditional on 𝑿 and
𝑇 . Once the conditional distributions of 𝑀 and 𝑌 are obtained, the
counterfactuals can be estimated, and the individual direct and indirect
effects can be calculated accordingly. The proposed CGAN for the single
mediator case is named as GAMN-S.

The formulation of GAMN-S. Analogous to the benchmark model
(2), our GAMN-S is composed of two blocks, a mediator block and an
outcome block. Each block is designed as a CGAN. Corresponding to
the first equation of (2), let 𝐺𝑀 be the generator of the mediator block

𝑀̂ = 𝐺𝑀 (𝒁𝑀 , 𝑇 ,𝑿; 𝜃𝐺𝑀
), (7)

where 𝑀̂ is the generated variable for mediator 𝑀 , 𝒁𝑀 ∼ 𝑁((0, 1)𝑑𝑀 )
is the random noise. 𝑁((0, 1)𝑑𝑀 ) denotes a multivariate normal distri-
bution with mean vector (0, 0,… , 0) and covariance matrix equal to
the 𝑑𝑀 × 𝑑𝑀 identity matrix. 𝜃𝐺𝑀

represents the network parameters.
𝐺𝑀 is designed as a feedforward network, for which (𝒁𝑀 , 𝑇 ,𝑿) forms
the input layer. 𝒁𝑀 and 𝑿 are associated with a deep fully-connected
network, while 𝑇 is associated with a linear structure. The architecture
of 𝐺𝑀 is demonstrated in Fig. 2. The sample set used for training the
mediator block is denoted as 𝑆𝑀 = {(𝑀𝑖, 𝑇𝑖,𝑿𝑖)}𝑛𝑖=1. Corresponding to
𝑆𝑀 , 𝑆𝑀 = {(𝑀̂𝑖, 𝑇𝑖,𝑿𝑖)}𝑛𝑖=1 represents the data set generated by 𝐺𝑀 .
Let 𝐷𝑀 (𝑀,𝑇 ,𝑿; 𝜃𝐷𝑀

) be the discriminator of the mediator block. 𝐷𝑀
is used to measure the similarity between 𝑆𝑀 and 𝑆𝑀 , and designed as
a deep fully-connected forward neural network (FNN) with parameters
𝜃𝐷𝑀

. 𝐷𝑀 takes sigmoid function as its output layer, with outputs
ranged in [0, 1]. 𝐺𝑀 and 𝐷𝑀 constitute the mediator block of GAMN-

S. The optimal 𝜃𝐺𝑀

and 𝜃𝐷𝑀
are obtained by the following minimax
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Fig. 2. The network structure of 𝐺𝑀 and 𝐺𝑌 for GAMN-S.
Fig. 3. Block diagram of GAMN-S.
optimization

min
𝜃𝐺𝑀

max
𝜃𝐷𝑀

E𝑀∼𝑃𝑑𝑎𝑡𝑎 [log𝐷𝑀 (𝑀,𝑇 ,𝑿; 𝜃𝐷𝑀
)]

+E𝒁𝑀∼𝑁((0,1)𝑑𝑀 )[log(1 −𝐷𝑀 (𝐺𝑀 (𝒁𝑀 , 𝑇 ,𝑿; 𝜃𝐺𝑀
), 𝑇 ,𝑿; 𝜃𝐷𝑀

))], (8)

where 𝑃𝑑𝑎𝑡𝑎 denotes the distribution of the observations. For the outcome
block, the generator 𝐺𝑌 is given as

𝑌 = 𝐺𝑌 (𝒁𝑌 , 𝑇 ,𝑿,𝑀 ; 𝜃𝐺𝑌
), (9)

where 𝑌 is the generated outcome, 𝒁𝑌 is 𝑑𝑌 -dimensional normally dis-
tributed random noise, i.e. 𝒁𝑌 ∼ 𝑁((0, 1)𝑑𝑌 ). 𝜃𝐺𝑌

denotes the network
parameters. Corresponding to the output 𝑌 , 𝐺𝑌 is designed as a particular
FNN, setting 𝑀 and 𝑇 in the last layer but one of the network. The
architecture of 𝐺𝑌 is also presented in Fig. 2. The designment of 𝐺𝑀 and
𝐺𝑌 is further illustrated in Section 3.3. The sample set used for training
the outcome block is denoted as 𝑆𝑌 = {(𝑌𝑖,𝑀𝑖, 𝑇𝑖,𝑿𝑖)}𝑛𝑖=1. Corresponding
to 𝑆𝑌 , 𝑆𝑌 = {(𝑌𝑖,𝑀𝑖, 𝑇𝑖,𝑿𝑖)}𝑛𝑖=1 represents the data set generated by 𝐺𝑌 .
5

𝐷𝑌 (𝑌 ,𝑀, 𝑇 ,𝑿; 𝜃𝐷𝑌
) is the discriminator of the outcome block, also designed
as a fully-connected FNN with parameter 𝜃𝐷𝑌
. 𝐷𝑌 also takes the sigmoid

function as its output layer and is used to measure the similarity between
𝑆𝑌 and 𝑆𝑌 . 𝐺𝑌 and 𝐷𝑌 form the CGAN for the outcome block and are
trained by the following minimax optimization problem

min
𝜃𝐺𝑌

max
𝜃𝐷𝑌

E𝑌∼𝑃𝑑𝑎𝑡𝑎 [log𝐷𝑌 (𝑌 ,𝑀, 𝑇 ,𝑿; 𝜃𝐷𝑌
)]

+E𝒁𝑌 ∼𝑁((0,1)𝑑𝑌 )[log(1 −𝐷𝑌 (𝐺𝑌 (𝒁𝑌 , 𝑇 ,𝑿,𝑀 ; 𝜃𝐺𝑌
),𝑀, 𝑇 ,𝑿; 𝜃𝐷𝑌

))].(10)

We use Adaptive Momentum (Adam) algorithm as the optimizer to perform
the training. The optimization schemes for our GAMN-S are presented
in Algorithm 1. The block diagram of GAMN-S is summarized and pre-
sented in Fig. 3. If GAMN-S were well trained, the conditional densi-
ties 𝑃 (𝑀̂|𝑿, 𝑇 ) and 𝑃 (𝑌 |𝑇 ,𝑿,𝑀) can closely approximate 𝑃 (𝑀|𝑿, 𝑇 ) and
𝑃 (𝑌 |𝑇 ,𝑿,𝑀), respectively. Then, GAMN-S can be utilized to generate the
desired counterfactuals with a high degree of accuracy.

Estimating direct effects. Let 𝐺𝑀 (⋅; 𝜃̂𝐺𝑀
) and 𝐺𝑌 (⋅; 𝜃̂𝐺𝑌

) be the well-
trained generators. Let 𝑁𝑔 be a large positive integer. To obtain filtered

factual and counterfactual relating to 𝑀𝑖, two groups of random noises
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𝒁𝑀𝑖
(𝑗0) and 𝒁𝑀𝑖

(𝑗1) (𝑗0, 𝑗1 = 1, 2,… , 𝑁𝑔) are independently drawn from
((0, 1)𝑑𝑀 ). 𝑀𝑖 under the treatment 𝑡0 can be given as

̂
𝑖(𝑡0,𝒁𝑀𝑖

(𝑗0)) = 𝐺𝑀 (𝒁𝑀𝑖
(𝑗0), 𝑡0,𝑿𝑖; 𝜃̂𝐺𝑀

), (11)

where 𝑀̂𝑖(𝑡0,𝒁𝑀𝑖
(𝑗0))𝑠 are used to mimic the data generation process of the

actual 𝑀𝑖(𝑡0). Similarly, the possible individual counterfactuals for 𝑀𝑖 can
e generated by

̂
𝑖(𝑡1,𝒁𝑀𝑖

(𝑗1)) = 𝐺𝑀 (𝒁𝑀𝑖
(𝑗1), 𝑡1,𝑿𝑖; 𝜃̂𝐺𝑀

). (12)

𝑀̂𝑖(𝑡1,𝒁𝑀𝑖
(𝑗))𝑠 denote the generated individual counterfactuals, and es-

sentially provide predictions in terms of the empirical distribution. By
averaging these generated values, the mean of filtered factual can be
calculated as

𝑀̂𝑖(𝑡0) =
1
𝑁𝑔

𝑁𝑔
∑

𝑗0=1
𝑀̂𝑖(𝑡0,𝒁𝑀𝑖

(𝑗0)), (13)

nd the mean estimation of individual counterfactual can be calculated as

̂
𝑖(𝑡1) =

1
𝑁𝑔

𝑁𝑔
∑

𝑗1=1
𝑀̂𝑖(𝑡1,𝒁𝑀𝑖

(𝑗1)). (14)

ith 𝑀̂𝑖(𝑡0), the individual direct effects for the 𝑖th individual can be
enerated as

𝑖,𝑇→𝑌 (𝑗) = 𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡0),𝒁1
𝑌𝑖
(𝑗)) − 𝑌𝑖(𝑡0, 𝑀̂𝑖(𝑡0),𝒁2

𝑌𝑖
(𝑗)), (15)

where △𝑖,𝑇→𝑌 (𝑗) is the individual direct effect associated with 𝒁1
𝑌𝑖
(𝑗) and

𝒁2
𝑌𝑖
(𝑗). 𝒁1

𝑌𝑖
(𝑗) and 𝒁2

𝑌𝑖
(𝑗) (𝑗 = 1, 2,… , 𝑁𝑔) are independently drawn from

𝑁((0, 1)𝑑𝑌 ). 𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡0),𝒁1
𝑌𝑖
(𝑗))𝑠 and 𝑌𝑖(𝑡0, 𝑀̂𝑖(𝑡0),𝒁2

𝑌𝑖
(𝑗))𝑠 are the generated

values of 𝑌𝑖 with different treatments, and calculated as

𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡0),𝒁1
𝑌𝑖
(𝑗)) = 𝐺𝑌 (𝒁1

𝑌𝑖
(𝑗), 𝑡1,𝑿(𝑖), 𝑀̂𝑖(𝑡0); 𝜃̂𝐺𝑌

),

𝑌𝑖(𝑡0, 𝑀̂𝑖(𝑡0),𝒁2
𝑌𝑖
(𝑗)) = 𝐺𝑌 (𝒁2

𝑌𝑖
(𝑗), 𝑡0,𝑿(𝑖), 𝑀̂𝑖(𝑡0); 𝜃̂𝐺𝑌

). (16)

Accordingly, the average direct effects corresponding to different noises can
be calculated as

△𝑇→𝑌 (𝑗) =
1
𝑛

𝑛
∑

𝑖=1
△𝑖,𝑇→𝑌 (𝑗). (17)

The direct effect can be estimated by

△𝑇→𝑌 = 1
𝑁𝑔

𝑁𝑔
∑

𝑗=1
△𝑇→𝑌 (𝑗)

= 1
𝑁𝑔

1
𝑛

𝑁𝑔
∑

𝑗=1

𝑛
∑

𝑖=1

(

𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡0),𝒁1
𝑌𝑖
(𝑗)) − 𝑌𝑖(𝑡0, 𝑀̂𝑖(𝑡0),𝒁2

𝑌𝑖
(𝑗))

)

. (18)

Estimating indirect effects. With 𝑀̂𝑖(𝑡1), the individual indirect effects
for the 𝑖th individual can be generated as

△𝑖,𝑇→𝑀→𝑌 (𝑗) = 𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡1),𝒁3
𝑌𝑖
(𝑗)) − 𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡0),𝒁4

𝑌𝑖
(𝑗)), (19)

where 𝒁3
𝑌𝑖
(𝑗) and 𝒁4

𝑌𝑖
(𝑗) (𝑗 = 1, 2,… , 𝑁𝑔) are also two groups of noises

independently drawn from 𝑁((0, 1)𝑑𝑌 ). 𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡1),𝒁3
𝑌𝑖
(𝑗))𝑠 and 𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡0),

𝒁4
𝑌𝑖
(𝑗))𝑠 denote the generated counterfactuals of 𝑌𝑖, which are calculated as

𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡1),𝒁3
𝑌𝑖
(𝑗)) = 𝐺𝑌 (𝒁3

𝑌𝑖
(𝑗), 𝑡1,𝑿(𝑖), 𝑀̂𝑖(𝑡1); 𝜃̂𝐺𝑌

),

𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡0),𝒁4
𝑌𝑖
(𝑗)) = 𝐺𝑌 (𝒁4

𝑌𝑖
(𝑗), 𝑡1,𝑿(𝑖), 𝑀̂𝑖(𝑡0); 𝜃̂𝐺𝑌

). (20)

△𝑖,𝑇→𝑀→𝑌 (𝑗) is the individual indirect effects corresponding to 𝒁3
𝑌𝑖
(𝑗) and

𝒁4
𝑌𝑖
(𝑗). Based on (19), the average indirect effect corresponding to different

noises can be calculated as

△𝑇→𝑀→𝑌 (𝑗) =
1
𝑛

𝑛
∑

△𝑖,𝑇→𝑀→𝑌 (𝑗). (21)
6

𝑖=1
Then, the indirect effect can be calculated as

△𝑇→𝑀→𝑌 = 1
𝑁𝑔

𝑁𝑔
∑

𝑗=1
△𝑇→𝑀→𝑌 (𝑗)

= 1
𝑁𝑔

1
𝑛

𝑁𝑔
∑

𝑗=1

𝑛
∑

𝑖=1

(

𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡1),𝒁3
𝑌𝑖
(𝑗)) − 𝑌𝑖(𝑡1, 𝑀̂𝑖(𝑡0),𝒁4

𝑌𝑖
(𝑗))

)

. (22)

We emphasize that if the state of any individual under 𝑡0 is counterfactual,
the counterfactual can also be generated by 𝐺𝑀 (⋅; 𝜃̂𝐺𝑀

) and 𝐺𝑌 (⋅; 𝜃̂𝐺𝑌
)

following the method presented in this subsection. Thus, all the states under
𝑡1 are set as counterfactuals for consistency.

The empirical distributions and confidence intervals of direct/
indirect effects. Since ∀𝑖 (𝑖 = 1, 2,… , 𝑛) and ∀𝑗 (𝑗 = 1, 2,… , 𝑁𝑔), 𝒁1

𝑌𝑖
(𝑗)s

nd 𝒁2
𝑌𝑖
(𝑗)s are independently sampled from 𝑁((0, 1)𝑑𝑌 ), △𝑖,𝑇→𝑌 (𝑗)𝑠 and

𝑇→𝑌 (𝑗)𝑠 essentially provide the projected empirical distributions of in-
ividual and average direct effects, respectively. Similarly, △𝑖,𝑇→𝑀→𝑌 (𝑗)𝑠

and △𝑇→𝑀→𝑌 (𝑗)𝑠 formulate the projected empirical distributions of indi-
idual and average indirect effects from the perspective of Monte Carlo,
espectively. The corresponding confidence intervals for direct effects and
ndirect effects can be naturally established by computing the quantiles of

𝑇→𝑌 (𝑗)𝑠 and △𝑇→𝑀→𝑌 (𝑗)𝑠. Then, with (17) and (21), a more promising
mediation analysis can be conducted using the proposed GAMN-S.

3.2.2. GAMN for multiple mediators case
Assume that there are 𝑃 mediators, for the 𝑖th sample (𝑌𝑖,𝑴 𝑖, 𝑇𝑖,𝑿𝑖)

(𝑖 = 1, 2,… , 𝑛), 𝑴 𝑖 is set as a 𝑃 -dimensional mediator vector rather than a
scaler in GAMN-S. The 𝑝th element of 𝑴 𝑖 is denoted as 𝑀𝑝

𝑖 , which implies
𝑴 𝑖 = (𝑀1

𝑖 ,𝑀
2
𝑖 ,… ,𝑀𝑃

𝑖 ). The proposed CGAN for the multiple-mediator case
is named GAMN-M.

The formulation of GAMN-M. The proposed GAMN-M also comprises
two blocks, a mediator block and an outcome block. With 𝑃 mediators, the
mediator block consists of 𝑃 CGANs. For ∀𝑝 = 1, 2,… , 𝑃 , let 𝐺𝑝

𝑀 be the
generator for the 𝑝th mediator, defined as

𝑀̂𝑝 = 𝐺𝑝
𝑀 (𝒁𝑝

𝑀 , 𝑇 ,𝑿; 𝜃𝐺𝑝
𝑀
), (23)

where 𝒁𝑝
𝑀 ∼ 𝑁((0, 1)𝑑𝑀𝑝 ) is set to be a 𝑑𝑀𝑝 -dimensional white noise

(corresponding to the 𝑝th mediator). 𝜃𝐺𝑝
𝑀

represents the parameters of 𝐺𝑝
𝑀 .

Let 𝐷𝑝
𝑀 (𝑀𝑝, 𝑇 ,𝑿; 𝜃𝐷𝑝

𝑀
) be the discriminator for 𝐺𝑝

𝑀 , where 𝜃𝐷𝑝
𝑀

represents
the parameters of 𝐷𝑝

𝑀 . 𝐺𝑝
𝑀 and 𝐷𝑝

𝑀 construct the CGAN for 𝑀𝑝. We remark
that their structures and corresponding minimax optimization problem are
similar to 𝐺𝑀 and 𝐷𝑀 developed for the single mediator case. For the
outcome block, the generator is still denoted as 𝐺𝑌 , and given as

𝑌 = 𝐺𝑌 (𝒁𝑌 , 𝑇 ,𝑿,𝑴 ; 𝜃𝐺𝑌
), (24)

where 𝑌 is the generated outcome, 𝒁𝑌 is 𝑑𝑌 -dimensional normally dis-
tributed random noise, and 𝜃𝐺𝑌

represents the network parameters.
𝐷𝑌 (𝑌 ,𝑴 , 𝑇 ,𝑿; 𝜃𝐷𝑌

) is the discriminator of the outcome block. The opti-
mization problem and network structure of CGAN for the outcome block
is the same as GAMN-S, except that 𝑴 in (24) is a 𝑃 -dimensional vector
instead of a scalar in (9). The training is also performed using Adam
algorithm based on (10). The block diagram and training schemes are
summarized in Fig. 4 and Algorithm 2, respectively.

Estimating direct effects. Let 𝐺𝑝
𝑀 (⋅; 𝜃̂𝐺𝑀𝑝 )s and 𝐺𝑌 (⋅; 𝜃̂𝐺𝑌

) be the well-
trained generators. For ∀𝑖 (𝑖 = 1, 2,… , 𝑛) and ∀𝑝 (𝑝 = 1, 2,… , 𝑃 ), with a large
𝑁𝑔 , two groups of random noises 𝒁𝑝

𝑀𝑖
(𝑗0) and 𝒁𝑝

𝑀𝑖
(𝑗1) (𝑗0, 𝑗1 = 1, 2,… , 𝑁𝑔)

are independently drawn from 𝑁((0, 1)𝑑𝑀𝑝 ). The individual factuals and
counterfactuals can be generated by

𝑀̂𝑝
𝑖 (𝑡0,𝒁

𝑝
𝑀𝑖

(𝑗0)) = 𝐺𝑝
𝑀 (𝒁𝑝

𝑀𝑖
(𝑗0), 𝑡0,𝑿𝑖; 𝜃̂𝐺𝑝

𝑀
),

𝑀̂𝑝
𝑖 (𝑡1,𝒁

𝑝
𝑀𝑖

(𝑗1)) = 𝐺𝑝
𝑀 (𝒁𝑝

𝑀𝑖
(𝑗1), 𝑡1,𝑿𝑖; 𝜃̂𝐺𝑝

𝑀
). (25)

Then, the mean of the filtered factuals and counterfactuals can be calculated
as

𝑀̂𝑝
𝑖 (𝑡0) =

1
𝑁

𝑁𝑔
∑

𝑀̂𝑝
𝑖 (𝑡0,𝒁

𝑝
𝑀𝑖

(𝑗0)), 𝑀̂𝑝
𝑖 (𝑡1) =

1
𝑁

𝑁𝑔
∑

𝑀̂𝑝
𝑖 (𝑡1,𝒁

𝑝
𝑀𝑖

(𝑗1)). (26)

𝑔 𝑗0=1 𝑔 𝑗1=1
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Algorithm 1: Training schemes of GAMN-S.
Initialization: parameters 𝜃𝐺𝑀

, 𝜃𝐷𝑀
, 𝜃𝐺𝑌

, 𝜃𝐷𝑌
and learning rate 𝜂.

while training loss 𝑉1 and 𝑉2 has not converged do
Receiving {(𝑌𝑖,𝑀𝑖, 𝑇𝑖,𝑿𝑖)}𝑛𝑖=1; Drawing {𝒁𝑀𝑖

}𝑛𝑖=1; Drawing {𝒁𝑌𝑖}
𝑛
𝑖=1

for 𝑖 = 1, 2,… , 𝑛 do
𝑀̂𝑖 ← 𝐺𝑀 (𝒁𝑀𝑖

, 𝑇𝑖,𝑿𝑖; 𝜃𝐺𝑀
)

𝑌𝑖 ← 𝐺𝑌 (𝒁𝑌𝑖 ,𝑀𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐺𝑌
)

end for
Discriminator optimization
Fixed 𝜃𝐺𝑀

and 𝜃𝐺𝑌

Maximize 𝑉1 =
1
𝑛
∑𝑛

𝑖=1

[

log𝐷𝑀 (𝑀𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑀
) + log𝐷𝑌 (𝑌𝑖,𝑀𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑌

)
]

+ 1
𝑛
∑𝑛

𝑖=1

[

log(1 −𝐷𝑀 (𝑀̂𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑀
)) + log(1 −𝐷𝑌 (𝑌𝑖,𝑀𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑌

))
]

Update 𝜃𝐷𝑀
and 𝜃𝐷𝑌

by Adam
Generator optimization
Fixed 𝜃𝐷𝑀

and 𝜃𝐷𝑌

Minimize 𝑉2 =
1
𝑛
∑𝑛

𝑖=1
[

log(1 −𝐷𝑀 (𝐺𝑀 (𝒁𝑀𝑖
, 𝑇𝑖,𝑿𝑖; 𝜃𝐺𝑀

), 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑀
))

+ log(1 −𝐷𝑌 (𝐺𝑌 (𝒁𝑌𝑖 ,𝑀𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐺𝑌
),𝑀𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑌

))
]

Update 𝜃𝐺𝑀
and 𝜃𝐺𝑌

by Adam
end while
Output: 𝜃𝐺𝑀

, 𝜃𝐷𝑀
, 𝜃𝐺𝑌

and 𝜃𝐷𝑌
Fig. 4. Block Diagram of GAMN-M.
As 𝑃 mediators are involved, let 𝑴̂ 𝑖(𝑡0) = [𝑀̂1
𝑖 (𝑡0),… , 𝑀̂𝑃

𝑖 (𝑡0)] and 𝑴̂ 𝑖(𝑡1) =
[𝑀̂1

𝑖 (𝑡1),… , 𝑀̂𝑃
𝑖 (𝑡1)]. We also have 𝑴̂ (−𝑝)

𝑖 (𝑡1) = [𝑀̂1
𝑖 (𝑡1),… , 𝑀̂𝑝−1

𝑖 (𝑡1),
𝑀̂𝑝

𝑖 (𝑡0), 𝑀̂
𝑝+1
𝑖 (𝑡1)… , 𝑀̂𝑃

𝑖 (𝑡1)], where 𝑴̂ (−𝑝)
𝑖 (𝑡1) indicates the 𝑝th dimension

of 𝑴̂ 𝑖(𝑡1) replaced by 𝑴̂𝑝
𝑖 (𝑡0) while the other 𝑃 − 1 dimensions are kept

unchanged. With 𝑴̂ 𝑖(𝑡0), the factuals and counterfactuals for 𝑌𝑖 can be
generated by

𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡0),𝒁1
𝑌𝑖
(𝑗)) = 𝐺𝑌 (𝒁1

𝑌𝑖
(𝑗), 𝑡1,𝑿(𝑖), 𝑴̂ 𝑖(𝑡0); 𝜃̂𝐺𝑌

),

𝑌𝑖(𝑡0, 𝑴̂ 𝑖(𝑡0),𝒁2
𝑌𝑖
(𝑗)) = 𝐺𝑌 (𝒁2

𝑌𝑖
(𝑗), 𝑡0,𝑿(𝑖), 𝑴̂ 𝑖(𝑡0); 𝜃̂𝐺𝑌

). (27)

where 𝒁1
𝑌𝑖
(𝑗) and 𝒁2

𝑌𝑖
(𝑗) (𝑗 = 1, 2,… , 𝑁𝑔) are drawn from 𝑁((0, 1)𝑑𝑌 ). Then,

the individual direct effects can be generated by

△ (𝑗) = 𝑌 (𝑡 , 𝑴̂ (𝑡 ),𝒁1 (𝑗)) − 𝑌 (𝑡 , 𝑴̂ (𝑡 ),𝒁2 (𝑗)). (28)
7

𝑖,𝑇→𝑌 𝑖 1 𝑖 0 𝑌𝑖 𝑖 0 𝑖 0 𝑌𝑖
Accordingly, the average direct effect can be calculated as

△𝑇→𝑌 (𝑗) =
1
𝑛

𝑛
∑

𝑖=1
△𝑖,𝑇→𝑌 (𝑗). (29)

The direct effect can be estimated as

△𝑇→𝑌 = 1
𝑁𝑔

1
𝑛

𝑁𝑔
∑

𝑗=1

𝑛
∑

𝑖=1

(

𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡0),𝒁1
𝑌𝑖
(𝑗)) − 𝑌𝑖(𝑡0, 𝑴̂ 𝑖(𝑡0),𝒁2

𝑌𝑖
(𝑗))

)

. (30)

Estimating total indirect effects. With 𝑴̂ 𝑖(𝑡0) and 𝑴̂ 𝑖(𝑡1), for ∀𝑖, the
individual indirect effects can be generated by

△𝑖,𝑇→𝑴→𝑌 (𝑗) = 𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡1),𝒁3
𝑌𝑖
(𝑗)) − 𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡0),𝒁4

𝑌𝑖
(𝑗)), (31)

where 𝒁3
𝑌𝑖
(𝑗)𝑠 and 𝒁4

𝑌𝑖
(𝑗)𝑠 are drawn from 𝑁((0, 1)𝑑𝑌 ). △𝑖,𝑇→𝑴→𝑌 (𝑗) de-

notes the total individual indirect effects corresponding to 𝒁3 (𝑗) and
𝑌𝑖



Knowledge-Based Systems 282 (2023) 111117J. Zhang et al.
Algorithm 2 Training schemes of GAMN-M
Initialization: parameters 𝜃𝐺𝑝

𝑀
, 𝜃𝐷𝑝

𝑀
, (𝑝 = 1, 2,… , 𝑃 ), 𝜃𝐺𝑌

, 𝜃𝐷𝑌
, and learning rate 𝜂.

while training loss 𝑉1 and 𝑉2 has not converged do
Receiving {(𝑌𝑖,𝑴 𝑖, 𝑇𝑖,𝑿𝑖)}𝑛𝑖=1; Drawing {𝒁𝑌𝑖}

𝑛
𝑖=1 independently

for 𝑝 = 1, 2,… , 𝑃 do
Drawing {𝒁𝑝

𝑀𝑖
}𝑛𝑖=1 independently

end for
for 𝑖 = 1, 2,… , 𝑛 do

for 𝑝 = 1, 2,… , 𝑃 do
𝑀̂𝑝

𝑖 ← 𝐺𝑝
𝑀 (𝒁𝑝

𝑀𝑖
, 𝑇𝑖,𝑿𝑖; 𝜃𝐺𝑝

𝑀
)

end for
𝑌𝑖 ← 𝐺𝑌 (𝒁𝑌𝑖 ,𝑴 𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐺𝑌

)
end for
Discriminator optimization
Fixed 𝜃𝐺1

𝑀
,… , 𝜃𝐺𝑝

𝑀
and 𝜃𝐺𝑌

Maximize 𝑉1 =
1
𝑛
∑𝑛

𝑖=1

[

∑𝑃
𝑝=1 log𝐷

𝑝
𝑀 (𝑀𝑝

𝑖 , 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑝
𝑀
) + log𝐷𝑌 (𝑌𝑖,𝑴 𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑌

)
]

+ 1
𝑛
∑𝑛

𝑖=1

[

∑𝑃
𝑝=1 log(1 −𝐷𝑝

𝑀 (𝑀̂𝑝
𝑖 , 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑝

𝑀
)) + log(1 −𝐷𝑌 (𝑌𝑖,𝑴 𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑌

))
]

Update 𝜃𝐷𝑝
𝑀

(𝑝 = 1, 2,… , 𝑃 ) and 𝜃𝐷𝑌
by Adam

Generator optimization
Fixed 𝜃𝐷1

𝑀
,… , 𝜃𝐷𝑝

𝑀
and 𝜃𝐷𝑌

Minimize 𝑉2 =
1
𝑛
∑𝑛

𝑖=1
[
∑𝑃

𝑝=1 log(1 −𝐷𝑝
𝑀 (𝐺𝑝

𝑀 (𝒁𝑝
𝑀,𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐺𝑝

𝑀
), 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑝

𝑀
))

+ log(1 −𝐷𝑌 (𝐺𝑌 (𝒁𝑌𝑖 , 𝑇𝑖,𝑿𝑖,𝑴 𝑖; 𝜃𝐺𝑌
),𝑴 𝑖, 𝑇𝑖,𝑿𝑖; 𝜃𝐷𝑌

))
]

Update 𝜃𝐺𝑝
𝑀

(𝑝 = 1, 2,… , 𝑃 ) and 𝜃𝐺𝑌
by Adam

end while
Output: 𝜃𝐺𝑝

𝑀
(𝑝 = 1, 2,… , 𝑃 ), 𝜃𝐷𝑝

𝑀
(𝑝 = 1, 2,… , 𝑃 ), 𝜃𝐺𝑌

and 𝜃𝐷𝑌
,

𝒁4
𝑌𝑖
(𝑗), i.e., the sum of the individual indirect effects through all the 𝑀𝑝s.

𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡1),𝒁3
𝑌𝑖
(𝑗)) and 𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡0),𝒁4

𝑌𝑖
(𝑗)) can be calculated by

𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡1),𝒁3
𝑌𝑖
(𝑗)) = 𝐺𝑌 (𝒁3

𝑌𝑖
(𝑗), 𝑡1,𝑿(𝑖), 𝑴̂ 𝑖(𝑡1); 𝜃̂𝐺𝑌

),

𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡0),𝒁4
𝑌𝑖
(𝑗)) = 𝐺𝑌 (𝒁4

𝑌𝑖
(𝑗), 𝑡1,𝑿(𝑖), 𝑴̂ 𝑖(𝑡0); 𝜃̂𝐺𝑌

). (32)

Then, the average total indirect effects can be calculated as

△𝑇→𝑴→𝑌 (𝑗) =
1
𝑛

𝑛
∑

𝑖=1
△𝑖,𝑇→𝑴→𝑌 (𝑗). (33)

The total indirect effect can be calculated as

△𝑇→𝑴→𝑌 = 1
𝑁𝑔

1
𝑛

𝑁𝑔
∑

𝑗=1

𝑛
∑

𝑖=1

(

𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡1),𝒁3
𝑌𝑖
(𝑗)) − 𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡0),𝒁4

𝑌𝑖
(𝑗))

)

. (34)

Estimating indirect effects through a given mediator. For ∀𝑝 (𝑝 =
1, 2,… , 𝑃 ), the individual indirect effects implemented through the 𝑝th
mediator 𝑀𝑝 can be generated by

△𝑖,𝑇→𝑀𝑝→𝑌 (𝑗) = 𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡1),𝒁
𝑝(1)
𝑌𝑖

(𝑗)) − 𝑌𝑖(𝑡1, 𝑴̂
(−𝑝)
𝑖 (𝑡1),𝒁

𝑝(2)
𝑌𝑖

(𝑗)), (35)

where 𝒁𝑝(1)
𝑌𝑖

(𝑗)𝑠 and 𝒁𝑝(2)
𝑌𝑖

(𝑗)𝑠 are drawn from 𝑁((0, 1)𝑑𝑌 ). △𝑖,𝑇→𝑀𝑝→𝑌 (𝑗) de-
notes the individual indirect effects. 𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡1),𝒁

𝑝(1)
𝑌𝑖

(𝑗))𝑠 and 𝑌𝑖(𝑡1, 𝑴̂
(−𝑝)
𝑖 (𝑡1)

𝒁𝑝(2)
𝑌𝑖

(𝑗))𝑠 denote the generated counterfactuals, calculated by

𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡1),𝒁
𝑝(1)
𝑌𝑖

(𝑗)) = 𝐺𝑌 (𝒁
𝑝(1)
𝑌𝑖

(𝑗), 𝑡1,𝑿(𝑖), 𝑴̂ 𝑖(𝑡1); 𝜃̂𝐺𝑌
),

𝑌𝑖(𝑡1, 𝑴̂
(−𝑝)
𝑖 (𝑡1),𝒁

𝑝(2)
𝑌𝑖

(𝑗)) = 𝐺𝑌 (𝒁
𝑝(2)
𝑌𝑖

(𝑗), 𝑡1,𝑿(𝑖), 𝑴̂ (−𝑝)
𝑖 (𝑡1); 𝜃̂𝐺𝑌

). (36)

Then, the average indirect effects corresponding to different noises can be
calculated as

△𝑇→𝑀𝑝→𝑌 (𝑗) =
1
𝑛

𝑛
∑

𝑖=1
△𝑖,𝑇→𝑀𝑝→𝑌 (𝑗). (37)

The indirect effect implemented through the 𝑝th mediator 𝑀𝑝 can be
estimated as

△𝑇→𝑀𝑝→𝑌 = 1
𝑁𝑔

1
𝑛

𝑁𝑔
∑

𝑗=1

𝑛
∑

𝑖=1

(

𝑌𝑖(𝑡1, 𝑴̂ 𝑖(𝑡1),𝒁
𝑝(1)
𝑌𝑖

(𝑗)) − 𝑌𝑖(𝑡1, 𝑴̂
(−𝑝)
𝑖 (𝑡1),𝒁

𝑝(2)
𝑌𝑖

(𝑗))
)

.

(38)

The empirical distributions and confidence intervals. The empirical
distributions and confidence intervals of the direct and indirect effects can
8

be obtained using △𝑇→𝑌 (𝑗)s, △𝑇→𝑴→𝑌 (𝑗)s and △𝑇→𝑀𝑝→𝑌 (𝑗)s, similar to the
one mediator case.

3.3. Further theoretical discussions

In this section, we present some further theoretical discussions on
our GAMN. Compared with the benchmark methods, our GAMN provides
several significant improvements.

Describing complex noise. In the benchmark mediation model (2), 𝜀2
and 𝜀3 are set to be normally distributed with zero means and appear as
additive terms in the model. The only parameters that require estimation
for 𝜀2 and 𝜀3 are their respective standard errors, i.e., 𝜎2 and 𝜎3. From the
perspective of machine learning, model (2) uses a one-dimensional code to
handle stochastic factors, i.e., 𝜎2 for 𝜀2 and 𝜎3 for 𝜀3. However, a single
code insufficient to accurately capture the underlying noise characteristics
if the normality setting is violated or a complex noise is present. It is
noted that 𝒁𝑀 and 𝒁𝑌 in GAMN are used to model the stochastic factors
given by 𝜀2 and 𝜀3. In contrast to the normality setting, according to
GAN theory, 𝒁𝑀 and 𝒁𝑌 are multi-dimensional stochastic vectors and can
be mapped by a proper deep neural network to approximate arbitrarily
complex density functions, which implies 𝒁𝑀 and 𝒁𝑌 and the associated
deep network essentially provide a multi-dimensional encoding scheme to
efficiently describe the complex noise, making our GAMN a more flexible
alternative to the existing benchmarks.

Handling heterogeneity. The architecture of GAMN, as depicted in
Fig. 2, shows that the covariate vectors 𝑋 and 𝒁𝑀 are input into 𝐺𝑀 ,
while 𝑋 and 𝒁𝑌 are input into 𝐺𝑌 , all within the same input layer of the
network. These vectors interact with each other through the associated deep
structure. In terms of the system (2), 𝐺𝑀 defined by (7) and 𝐺𝑌 defined by
(9) can be viewed as two equations from a nonlinear regression perspective,
generally given as

𝑀 = 𝑔𝑀 (𝑿, 𝑇 , 𝜀2) and 𝑌 = 𝑔𝑌 (𝑀,𝑿, 𝑇 , 𝜀3), (39)

where 𝑔𝑀 and 𝑔𝑌 are nonlinear regression functions corresponding to 𝐺𝑀

and 𝐺𝑌 , and 𝜀2 and 𝜀3 correspond to 𝒁𝑀 and 𝒁𝑌 , respectively. Since
𝜀2 and 𝜀3 can appear nonlinearly and are not mandatory to be additive,
the couplings between the random terms and covariates are allowed in

(39). If heterogeneity exists, e.g., 𝑿, 𝜀2, and 𝜀3 are coupled as 𝑔1(𝑿)𝜀2 and
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𝑔2(𝑿)𝜀3 (𝑔1 and 𝑔2 are unknown functions), the complex patterns can be well
specified by GAMN with proper deep network structures. Moreover, unlike
traditional regression models that impose strict parametric assumptions on
the random terms to address heterogeneity, our method relaxes these apriori
restrictions and can efficiently learn complex heterogeneous patterns.

Modeling nonlinearity. As shown in Fig. 2, 𝑿 and 𝒁𝑀 in 𝐺𝑀 are
located in the input layer of the network. Using a deep feedforward
structure, GAMN is capable of capturing the nonlinear relationships among
the variables involved in 𝐺𝑀 . For the network structure associated with
𝑇 , on the one hand, in many benchmark mediation problems, whether the
treatment is imposed on specific individuals is irrelevant to the character-
istics represented by covariates [10,12]. Therefore, the treatment variable
𝑇 is typically considered independent of 𝑿 in many mediation problems,
and as such, it is treated as a separate component without coupling with 𝑿
in the structure of 𝐺𝑀 . On the other hand, if 𝑇 appears in a linear term in
the mediation model, it is convenient to calculate the direct and indirect
treatment effects and compare our network model with the traditional
methods, by examining the coefficient associated with 𝑇 . Consequently, the
network structure related to 𝑇 is specifically designed to be linear in line

ith standard mediation analysis practices.

The linear structures in GAMN. For 𝐺𝑌 , with binary treatment 𝑇 ∈
𝑡⋆0 , 𝑡

⋆
1 }, only the samples from (𝑌 ,𝑿,𝑀(𝑡⋆0 ), 𝑡

⋆
0 ) and (𝑌 ,𝑋,𝑀(𝑡⋆1 ), 𝑡

⋆
1 ) can be

bserved. (𝑌 ,𝑿,𝑀(𝑡⋆1 ), 𝑡
⋆
0 ) and (𝑌 ,𝑿,𝑀(𝑡⋆0 ), 𝑡

⋆
1 ) are the counterfactuals to

e estimated based on the observations. For prediction, the neural network
𝑌 can also be considered as a continuous function, essentially making
redictions based on its continuations. It is noted that the distances be-
ween the observations and counterfactuals (i.e., ‖(𝑀(𝑡⋆1 ), 𝑡

⋆
0 ) − (𝑀(𝑡⋆0 ), 𝑡

⋆
0 )‖,

(𝑀(𝑡⋆1 ), 𝑡
⋆
0 ) − (𝑀(𝑡⋆1 ), 𝑡

⋆
1 )‖, ‖(𝑀(𝑡⋆0 ), 𝑡

⋆
1 ) − (𝑀(𝑡⋆0 ), 𝑡

⋆
0 )‖ and ‖(𝑀(𝑡⋆0 ), 𝑡

⋆
1 ) −

(𝑀(𝑡⋆0 ), 𝑡
⋆
0 )‖) could be quite large, which means the observations used to

train 𝐺𝑌 are distinct from the counterfactuals in terms of component (𝑀,𝑇 ).
The continuations of 𝐺𝑌 along the directions of (𝑀,𝑇 ) can be difficult
and inaccurate. With a complex model structure (deep network structure
associated with (𝑀,𝑇 )), 𝐺𝑌 probably makes very biased predictions for
inferring the counterfactuals. To address this, we adhere to Occam’s razor
principle in learning theory, favoring simplicity in the architecture related
to 𝑀 and 𝑇 . Therefore, we position 𝑍𝑌 and 𝑿 in the deeper layers
of 𝐺𝑌 , while 𝑀 and 𝑇 are designed to be in the shallower layers and
participate in linear components of the network. This arrangement enhances
the generalization ability of our model. Additionally, the deep structure
associated with 𝑿 and 𝒁𝑌 naturally accommodates nonlinear covariate
effects. Consequently, these architectural choices in GAMN contribute to
more accurate counterfactual estimations and improved mediation analysis.

Model interpretability. Following the network structures shown in
Fig. 2, the formulations of 𝐺𝑀 and 𝐺𝑌 given by (7) and (9) can be further
specified as

𝑀̂ = 𝐺𝑀 (𝒁𝑀 , 𝑇 ,𝑿) = 𝑎𝑇 + 𝑓1(𝑿,𝒁𝑀 ), (40)
𝑌 = 𝐺𝑌 (𝒁𝑌 , 𝑇 ,𝑿,𝑀) = 𝑏𝑀 + 𝑐′𝑇 + 𝑓2(𝑿,𝒁𝑌 ), (41)

where 𝑎, 𝑏 and 𝑐′ are the parameters of the linear components. 𝑓1 and
𝑓2 represent two unknown functions corresponding to the nonlinear com-
ponents of 𝐺𝑀 and 𝐺𝑌 . On the one hand, by (4), the direct effects and
indirect effects estimated in the counterfactual framework can be also given
by △𝑇→𝑌 = (𝑡1−𝑡0)𝑐′ and △𝑇→𝑴→𝑌 = (𝑡1−𝑡0)𝑎𝑏. Thus, the estimations of the
linear parameters are crucial for mediation analysis. On the other hand, it is
noted that 𝜕𝑀̂∕𝜕𝑇 = 𝑎, 𝜕𝑌 ∕𝜕𝑇 = 𝑏 and 𝜕𝑌 ∕𝜕𝑀 = 𝑐′, the linear parameters
also directly quantify the marginal effects with respect to the treatment
and mediator variables, which explicitly demonstrate the impact of changes
in the treatment on the outcome and mediator variables. Therefore, our
partially linear network designment can not only bring better generalization
and more accurate counterfactual predictions, but also provide a certain
level of model interpretability in the context of CMA. In Section 4, we
will thoroughly discuss and provide proof regarding the convergence of our
proposed model, specifically focusing on the convergence of the estimations
9

for these linear parameters.
4. Theoretical view

We investigate the weak convergence of GAMN to conditional distri-
bution and the convergence of the estimators of treatment and mediation
effects. For simplicity, we consider the uniform GAMN function to represent
modeling for 𝐺𝑌 and 𝐺𝑀 hereafter. Consider (𝑋, 𝑌 , 𝑇 ) ∈ ×× , where  ,
 and  are the value domains of 𝑋, 𝑌 and 𝑇 , respectively. In the mediator
block, 𝑌 can be replaced by 𝑀 for the mediator. Likewise, we can replace
𝑇 with (𝑇 ,𝑀) in the outcome block to have the original modeling. With
(𝑌𝑖, 𝑇𝑖, 𝑋𝑖) (𝑖 = 1, 2,… , 𝑛), we have

(𝐺̂, 𝐷̂) = min
𝐺

max
𝐷

𝑛(𝐺,𝐷)

≡ min
𝐺∈

max
𝐷∈

1
𝑛

𝑛
∑

𝑖=1
[log𝐷(𝑌𝑖, 𝑇𝑖, 𝑋𝑖)]

+ 1
𝑛

𝑛
∑

𝑖=1
[log(1 −𝐷(𝐺(𝑍𝑖, 𝑇𝑖, 𝑋𝑖), 𝑇𝑖, 𝑋𝑖))], (42)

where  and  are function spaces spanned by ReLU-activated FNN for
𝐷 and 𝐺, respectively. Inspired by recent advances [49], we first provide a
different insight to regard CGANs (8) and (10), which are conditional on the
continuous and categorical variables 𝑋 instead of finite labels, as the gener-
ative learning targeting the joint distribution. 𝑝𝑋,𝑌 ,𝑇 and 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇 denote
the densities of the joint distributions of (𝑋, 𝑌 , 𝑇 ) and (𝑋,𝐺(𝑍, 𝑇 ,𝑋), 𝑇 ).
By Lemma 2.2 in [49], suppose that 𝑍 is independent of 𝑋 and 𝑇 . Then
𝑝𝐺(𝑍,𝑇 ,𝑋) ≐ 𝑝𝑌 |𝑋,𝑇 if and only if 𝑝𝑋,𝐺(𝑍,𝑋,𝑇 ),𝑇 ≐ 𝑝𝑋,𝑌 ,𝑇 , where ≐ represents that
he two density functions are the same. The lemma facilitates investigating
he optimization to minimize the discrepancy between 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇 and
𝑋,𝑌 ,𝑇 , instead of directly working on conditional distribution 𝑝𝑌 |𝑋,𝑇 . Let
𝐽𝑆 and D𝐾𝐿 be JS and Kullback–Leibler (KL) divergence, respectively.
ccording to [17,23], we have

D𝐽𝑆 (𝑝𝑋,𝑌 ,𝑇 ∥ 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇 )

sup
𝐷

{

E𝑊1∼𝑝𝑋,𝑌 ,𝑇
log𝐷(𝑊1) + E𝑊2∼𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇

log(1 −𝐷(𝑊2))
}

+ log 4

sup
𝐷

{

E𝑋,𝑌 ,𝑇∼𝑝𝑋,𝑌 ,𝑇
log𝐷(𝑋, 𝑌 , 𝑇 ) + E𝑋,𝑇 ,𝑍∼𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇

log(1 −𝐷(𝑋,𝐺(𝑍,𝑋, 𝑇 ), 𝑇 ))
}

sup
𝐷

(𝐺,𝐷). (43)

herefore, the optimal 𝐺 and 𝐷 are defined as (𝐺∗, 𝐷∗) =
rg min𝐺 arg max𝐷 (𝐺,𝐷), and their empirical counterparts are de-
ined in (42). In our network structure, 𝑇 only appears in the last layer
nd servers as a linear part for 𝑌 . Hence, 𝐺(𝑍,𝑋, 𝑇 ) can be further
pecified as

(𝑍,𝑋, 𝑇 ) = 𝐺1(𝑍,𝑋) + 𝛽𝑇 , (44)

here 𝐺1(𝑍,𝑋) is a fully ReLU-activated FNN and 𝛽 is the coeffi-
ient of the treatment variable 𝑇 . First, we show the convergence
f (𝑋,𝐺(𝑍,𝑋, 𝑇 ), 𝑇 ) in distribution, and then apply the continuous
apping (44) to obtain the desired result. Using Scheff Lemma [see50,
hap 8.2], let D𝑇𝑉 be the total variation defined as

𝑇𝑉 (𝑝𝑋,𝑌 ,𝑇 , 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇 ) =
1
2
‖𝑝𝑋,𝑌 ,𝑇 − 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇 ‖1, (45)

where ‖ ⋅ ‖1 is the 𝐿1 norm. Further, we can bound the total variation
by its’ JS divergence, i.e.,

D𝐽𝑆 (𝑝𝑋,𝑌 ,𝑇 ∥ 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇 )

= 1
2

[

D𝐾𝐿

(

𝑝𝑋,𝑌 ,𝑇
|

|

|

|

|

|

𝑝𝑋,𝑌 ,𝑇 + 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇

2

)

+ D𝐾𝐿

(

𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇
|

|

|

|

|

|

𝑝𝑋,𝑌 ,𝑇 + 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇

2

) ]

≥ 1
4

[

D2
𝑇𝑉

(

𝑝𝑋,𝑌 ,𝑇 ,
𝑝𝑋,𝑌 ,𝑇 + 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇

2

)

+ D2
𝑇𝑉

(

𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇 ,
𝑝𝑋,𝑌 ,𝑇 + 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇

) ]
2



Knowledge-Based Systems 282 (2023) 111117J. Zhang et al.

A
i
c
b
a
𝜕

f

T

E

H

𝛽

T

P

m
c
t
T
b
p
t
d
d
i
s
g
d
i
d
t
a
c
p

l
p
t
a
a
i
p
M
m
d
f
c
w
a
t
m
b
T
s
w
d
a

a
T
o
p
m

f
T
s
g

= 1
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‖

‖

‖

‖

‖

𝑝𝑋,𝑌 ,𝑇 − 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇

2

‖

‖

‖

‖

‖

2

1

= 1
8
D2
𝑇𝑉 (𝑝𝑋,𝑌 ,𝑇 , 𝑝𝑋,𝐺(𝑍,𝑇 ,𝑋),𝑇 ), (46)

where the inequality in the third line follows Pinsker’s inequalities [51].
Therefore, we have paved the path to show a practical solution that
(𝐺̂, 𝑋, 𝑇 ) converge in distribution to (𝑋, 𝑌 , 𝑇 ) by the technique of excess
risk bound:

D2
𝑇𝑉 (𝑝𝑋,𝑌 ,𝑇 , 𝑃𝑋,𝐺̂(𝑍,𝑇 ,𝑋),𝑇 ) ≲ D𝐽𝑆 (𝑝𝑋,𝑌 ,𝑇 ∥ 𝑝𝑋,𝐺̂(𝑍,𝑇 ,𝑋),𝑇 )

= sup
𝐷

(𝐺̂, 𝐷) − sup
𝐷

(𝐺∗, 𝐷)

= sup
𝐷∈

(𝐺̂, 𝐷) − sup
𝐷

(𝐺̂, 𝐷)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥1

+ sup
𝐷∈

(𝐺̂, 𝐷) − sup
𝐷∈

𝑛(𝐺̂, 𝐷)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥21

+ sup
𝐷∈

𝑛(𝐺̂, 𝐷) − sup
𝐷∈

𝑛(𝐺̄, 𝐷)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥41

+ sup
𝐷∈

𝑛(𝐺̄, 𝐷) − sup
𝐷∈

(𝐺̄, 𝐷)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥22

+ sup
𝐷∈

(𝐺̄, 𝐷) − sup
𝐷

(𝐺̄, 𝐷)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥42

+ sup
𝐷

(𝐺̄, 𝐷) − sup
𝐷

(𝐺∗, 𝐷)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

𝛥3
≤ 𝛥1 + 𝛥3 + (𝛥21 + 𝛥22)

≤ 𝛥1 + 𝛥3 + sup
𝐷∈

sup
𝐺∈

|(𝐺,𝐷) − 𝑛(𝐺,𝐷)|

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝛥2

, (47)

where 𝐺̄ is any element that belongs to . 𝛥1 and 𝛥3 represent the
approximation errors of  and  for their optimal counterparts, respec-
tively. 𝛥2 is the supremum of estimation error for 𝑛 to , and thus can
be further controlled by the empirical process theorem. Like [49], the
following mild assumptions are made for the target generators to derive
the asymptotic results.

A.1 Target conditional generator 𝐺∗ is continuous and its 𝑙∞ norm
is upper bounded.

A.2 For the optimal discriminator, 𝑝𝑋,𝑌 ,𝑇
𝑝𝑋,𝐺,𝑌 +𝑝𝑋,𝑌 ,𝑇

is lower and upper
bounded in the support.

A.3 𝜕𝑡0E(𝑌 |𝑋, 𝑇 = 𝑡0) exists and is finite (for 𝑇 ∈ {𝑡1, 𝑡0}, 𝜕𝑡0 = 𝑡1−𝑡0).

For the FNN used for generators in  and discriminators in , we
consider the following assumptions to show the asymptotic result as the
network size grows with the sample size. Suppose a network has depth
, width  , and the whole size of the network is .

B.1 The 𝑙∞ norm generator 𝐺 within its support is upper bounded
by constant 𝐵.

B.2 As sample size 𝑛 goes to infinity,  → 0 and 𝐵 log() log 𝑛
𝑛 → 0.

dditionally, we consider the approximation error of specific structures
n linear part 𝛽𝑇 in . Assuming that the true data-generating process
onforms to a linear relationship between 𝑌 and 𝑇 while controlling for
oth random error and covariate 𝑋. One can express this relationship
s 𝑌 = 𝛽∗𝑇 + 𝑓 (𝑋, 𝜖), where 𝑓 represents an unknown function. Then
𝑡0E(𝑌 |𝑋, 𝑇 = 𝑡0) = 𝜕𝑡0[𝑡0𝛽∗ + E(𝑓 (𝑋, 𝜖)|𝑋)] = 𝛽∗. The following theo-

rem formally demonstrates weak convergence of the joint distributions
of (𝑋, 𝑇 , 𝑌 ) and (𝑋, 𝑇 ,𝐺(𝑍, 𝑇 ,𝑋)), and the desired outcome is obtained
or capturing the exact treatment effect 𝛽∗.

heorem 1. Under the assumptions A.1-A.3, B.1 and B.2, we have

𝑋,𝑇 ,𝑌 ,𝑍 D𝑇𝑉 (𝑝𝑋,𝑌 ,𝑇 , 𝑝𝑋,𝐺̂(𝑍,𝑇 ,𝑋),𝑇 )
𝑝
→ 0 and 𝑃𝑋,𝐺̂(𝑍,𝑇 ,𝑋),𝑇

𝑑
→ 𝑃𝑋,𝑌 ,𝑇 .
10

t

ence, we have further

̂ = 1
𝑁𝑔

1
𝑛

𝑛
∑

𝑖=1

𝑁𝑔
∑

𝑗=1

[

𝐺̂(𝑍𝑗 , 𝑋𝑖, 𝑇 = 𝑡1) − 𝐺̂(𝑍𝑗 , 𝑋𝑖, 𝑇 = 𝑡0)
]

𝑝
→ 𝜕𝑡0E(𝑌 |𝑋, 𝑇 = 𝑡0).

he above consistency results hold for our proposed network.

roof. See Appendix. ♦

Remark on the convergence of parameters. In GAMN, the min–
ax optimization objective typically revolves around minimizing the

onditional JS divergence between the conditional distribution of ac-
ual data and the conditional distribution of generated data [17,23].
he conditional JS divergence serves as a measure of the discrepancy
etween these two conditional distributions. The discriminator com-
utes the JS divergence between the current generated distribution and
he distribution of actual data. Subsequently, the generator produces
ata to establish a new generated distribution, thereby reducing JS
ivergence between the generated and actual distributions. Through
terative updates using Adam algorithm, we can achieve the optimal
olution to the min–max optimization problem, effectively guiding the
enerator to learn the underlying conditional distribution of actual
ata correctly. It is noteworthy that the unknown parameters in GAMN
mplicitly define the conditional distribution function of the generated
ata. Hence, when the generated distribution converges to the objec-
ive distribution, the unknown network parameters are also updated
nd converge to their target values. Theorem 1 further provides the
orresponding theoretical results regarding the convergence of the
arameters.
Remark on our contributions. This paper’s main contributions

ie in three aspects. First, this study approaches the benchmark CMA
roblem from an unprecedented generative machine learning perspec-
ive, reinterpreting the CMA problem as an image-to-image problem,
nd also introduces novel GAN-based mediation models with adaptive
rchitectures. Despite the similarities between the CMA problem and
mage-to-image translation problem, the widely used GANs in image
rocessing cannot be straightforwardly applied to mediation analysis.
ediation models are commonly applied in causal inference and treat-
ent effect evaluation in fields such as medicine and social sciences,
emanding high levels of interpretability and accuracy in counter-
actual estimation. The network architecture of conventional CGANs
annot meet the requirements of these CMA problems. In our GAMN,
e specifically design the linear structure for the treatment variable 𝑇
nd the mediator variable M. Compared with the conventional CGANs,
his designment not only provides more accurate counterfactual esti-
ation but also enhances model interpretability, which is particularly

eneficial for analyzing the mediation problems we are concerned with.
raditional mediation models make strict assumptions about model
tructure and random terms, which can also be relaxed in our frame-
ork. This allows us to explore the inherent complex patterns in the
ata in a more flexible manner and develop more accurate estimation
nd hypothesis testing methods.

Second, we prove the convergence of our method, with particular
ttention to the coefficients within the linear components of our GAMN.
hese convergence results offer a robust theoretical underpinning for
ur proposed GAN-based approach. Additionally, we conduct com-
rehensive empirical studies to demonstrate the effectiveness of our
ethod.

Third, we demonstrate that GAN approach can be more effective
or the development of novel mediation and causal inference models.
hrough the demonstration of reformulating the mediation model, this
tudy broadens insights into the construction of CMA models from a
enerative learning perspective. Thus, the methodology presented in

his study can be potentially extended to tackle a wide range of crucial



Knowledge-Based Systems 282 (2023) 111117J. Zhang et al.
Fig. 5. (a) Displays the convergence curves of the estimations for system (48). The red solid line represents the estimations of the direct effect, while the blue solid line corresponds
to the estimations of the indirect effect for each epoch. Notably, these estimations converge toward their target values, with the direct effect converging to 1 and the indirect
effect converging to 0.6, achieved approximately after 1200 epochs. (b) displays the convergence curves of the estimations for system (49). The red solid line corresponds to the
estimations of the direct effect, while the blue solid line represents the estimations of the total indirect effect for each epoch. Additionally, the green line, pink line, and yellow line
represent the estimations of the indirect effects through 𝑀1, 𝑀2, and 𝑀3, respectively. These estimations converge toward their respective target values, achieving convergence
approximately after 300 epochs. Specifically, the target values are set as follows: 0.75 for the direct effect, 1.5 for the total indirect effect, and 1, 0.5, and 0 for the indirect effects
through 𝑀1, 𝑀2, and 𝑀3, respectively.
mediation problems, including high-dimensional mediation challenges
and mediation scenarios with censored outcomes.

5. Experiments

In this section, numerical examples on artificial and realistic datasets
are presented to demonstrate the effectiveness of our method (GAMN-
S and GAMN-M). All the datasets and codes for this section shall be
released on Github.

5.1. GAMN-S with simulated data

Consider the following data generation process
{

𝑀𝑖 = 1 + 0.2
(

𝑋𝑖 + 1
)2 + 1.5𝑇𝑖 + 𝜀𝑀,𝑖,

𝑌𝑖 = 2.5 − 0.1𝑋2
𝑖 + sin(1.5𝑋𝑖) + 0.4𝑀𝑖 + 𝑇𝑖 + 𝜀𝑌 ,𝑖.

(48)

For ∀𝑖, the treatment variable 𝑇𝑖 ∼ (0.5) and pre-treatment covariate
𝑋𝑖 ∼  (0, 1), where (0.5) is the Bernoulli distribution with a success
probability of 0.5. The random error term is set as

𝜀𝑀,𝑖 = 𝜗(1−𝑇𝑖)𝑀,0 𝜗𝑇𝑖𝑀,1 and 𝜀𝑌 ,𝑖 = 𝜗(1−𝑇𝑖)𝑌 ,0 𝜗𝑇𝑖𝑌 ,1,

where 𝜗𝑀,0 ∼  (0, 0.252), 𝜗𝑀,1 ∼  (−0.5, 0.5), 𝜗𝑌 ,0 ∼ 𝑁(0, 0.025𝑋2
𝑖 )

and 𝜗𝑌 ,1 ∼  (0, 0.1 cos(𝑋𝑖)2),  (−0.5, 0.5) is the uniform distribution
on [−0.5, 0.5]. Thus, (48) is a nonlinear system and perturbed by non-
Gaussian and highly heterogeneous noises. Obviously, the objective
direct effect is 1, and the objective indirect effect is 0.6 (0.4 × 1.5).

Following Fig. 2, the GAMN-S for (48) is designed as follows. In
𝐺𝑀 , 𝑇 is the linear component of the network. The structure associated
with 𝑍𝑀 and 𝑋 is designed as a 4-layer FNN. The second and third
layers of the FNN contain 32 and 128 neurons, respectively. In 𝐺𝑌 , 𝑀
and 𝑇 formulate the linear component of the network. The structure
associated with 𝑍𝑌 and 𝑋 are designed as a 4-layer network, the second
and third layers of which also contain 32 and 128 neurons, respectively.
Both 𝒁𝑀 and 𝒁𝑌 are drawn from  ((0, 1)2). For the output layers of
𝐺𝑀 and 𝐺𝑌 , the identity function is adopted to generate a continuous
outcome. The architecture of discriminators 𝐷𝑀 and 𝐷𝑌 are the same
except the input variables. 𝐷𝑌 takes 𝑋, 𝑇 , 𝑀 and 𝑌 for its input layer,
while 𝐷𝑀 takes 𝑋, 𝑇 and 𝑀 as input variables. The second and third
layers of both networks contain 128 and 32 neurons, respectively. For
the output layers of 𝐷 and 𝐷 , sigmoid functions are adopted in
11

𝑀 𝑌
order to identify real or generated sample. In 𝐺𝑀 , 𝐷𝑀 , 𝐺𝑌 and 𝐷𝑌 ,
all the hidden layers are activated by Leaky ReLU function with slope
coefficient 0.2.

A total of 5000 samples are generated and used for the modeling.
When applying CGANs to generate images in the conventional tasks, it
is not necessary to separate the samples into training set and testing set.
However, the objective of GAMN is to estimate the counterfactuals. To
clearly demonstrate our method from a machine learning perspective,
80% samples are randomly selected as training set and the remaining
20% samples are selected as testing set. Our GAMN-S is first trained
based on the training set and then used to estimate the treatment effects
on testing set. To obtain the optimal performance, Adam algorithm with
learning rate 𝜂 = 0.0001 is utilized, and the GAMN-S is trained for 1500
epochs for convergence.

Fig. 5(a) shows the training process and convergence curves of esti-
mating direct effect △𝑇→𝑌 given by (18) and indirect effect △𝑇→𝑀→𝑌
given by (22) on the testing set with 𝑁𝑔 = 1 (for reducing computa-
tional load). The objective values are presented by black dotted lines.
The estimates obtained by our model converge to the objective values
after about 1200 epochs, which illustrates the effectiveness of our
method. The direct effects △𝑇→𝑌 (𝑗)𝑠 and indirect effects △𝑇→𝑀→𝑌 (𝑗)𝑠
(𝑗 = 1, 2,… , 𝑁𝑔) are calculated on the whole dataset with 𝑁𝑔 =
1000. The corresponding empirical distributions and 95% confidence
intervals (CI) can be calculated according to the method developed in
Section 3.2.1. △𝑇→𝑌 and △𝑇→𝑀→𝑌 are also calculated accordingly.
We remark that since the samples are randomly and sequentially added
into the training of our network, the estimations slightly fluctuate
around the objective ones, which is inevitable in the learning process.
Therefore, to improve the accuracy and stability, all the estimations of
the last 100 epochs are averaged to formulate our final results. Three
benchmark traditional methods (OLS-based method (OLS) [6,52], SEM
with nonparametric bootstrap (SEM) [53], and Bayesian Monte Carlo
method (Bayesian) [26]) and three benchmark GAN-based methods
(WGAN, WGAN-GP and LSGAN) are used for comparison. It is worth
noting that the network structures associated with WGAN, WGAN-
GP, and LSGAN are configured to be identical to GAMN-S. To further
demonstrate our method, we conduct experiments with different sam-
ple sizes (2000, 5000, and 10000) using GAMN-S. All the results are
reported in Table 2.
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Table 2
The estimated treatment effects by GAMN-S and other benchmark methods for system (48).

Methods △𝑇→𝑌 CI(△𝑇→𝑌 ) △𝑇→𝑀→𝑌 CI(△𝑇→𝑀→𝑌 )
True value 1 – 0.6 –

GAMN-S 0.9887 [0.9886, 0.9888] 0.5991 [0.5989, 0.5994]
OLS 1.3062 [1.2439, 1.3685] 0.2942 [0.2387, 0.3498]
SEM 1.3062 [1.1789, 1.4245] 0.2943 [0.1824, 0.4239]
Bayesian 1.3050 [1.1823, 1.4270] 0.2955 [0.1714, 0.4190]
WGAN 0.9792 [0.9789, 0.9794] 0.5975 [0.5972, 0.5980]
WGAN-GP 0.9874 [0.9874, 0.9875] 0.5918 [0.5917, 0.5919]
LSGAN 0.9978 [0.9976, 0.9980] 0.5811 [0.5807, 0.5814]
GAMN-S(2000) 0.9840 [0.9837, 0.9843] 0.5969 [0.5964, 0.5974]
GAMN-S(10000) 0.9986 [0.9984, 0.9987] 0.5879 [0.5876, 0.5881]
GAMN-S(25000) 0.9816 [0.9815, 0.9817] 0.5994 [0.5992, 0.5996]

Note: The results presented in this table are based on 𝑁𝑔 = 1000 repeated trials, the estimates and CIs are obtained through
multiple averages and calculating percentiles of them.
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It can be seen that both the direct and indirect effects are effectively
estimated by GAMN-S and other GAN-based methods, showcasing su-
perior performance compared to the traditional methods. As the sample
size increases, the estimation accuracy improves. Moreover, in compar-
ison to the traditional methods, GAN-based methods yield significantly
improved results.

5.2. GAMN-M with simulated data

Consider the following data generation process

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑀1
𝑖 = 0.5 + 0.2𝑋1,𝑖 + 0.8𝑋2,𝑖 + 0.5𝑋1,𝑖𝑋2,𝑖 + 0.2𝑋3,𝑖 + 0.3𝑋4,𝑖

+ 0.1𝑋5,𝑖 + 0.4𝑋6,𝑖 + 2𝑇𝑖 + 𝜀𝑀1 ,𝑖,
𝑀2

𝑖 = 0.5 + 0.4𝑋1,𝑖 + 0.2
(

𝑋1,𝑖 + 1
)2 + 0.1 exp(𝑋2,𝑖) + 0.2𝑋5,𝑖 + 0.2𝑋6,𝑖

+ 0.3𝑋7,𝑖 + 0.3𝑋8,𝑖 + 0.5𝑇𝑖 + 𝜀𝑀2 ,𝑖,
𝑀3

𝑖 = −0.5 + 0.3𝑋1,𝑖 + 0.2𝑋2,𝑖 + 0.1𝑋3
1,𝑖 + 0.6𝑋1,𝑖𝑋2,𝑖 + 0.3𝑋7,𝑖 + 0.1𝑋8,𝑖

+ 0.1𝑋9,𝑖 + 0.3𝑋10,𝑖 + 𝑇𝑖 + 𝜀𝑀3 ,𝑖,
𝑌𝑖 = 2.25 − 2

√

𝑋1,𝑖 + 5 + sin(1.5𝑋2,𝑖) + 0.5𝑀1
𝑖 +𝑀2

𝑖 + 0.25𝑋3,𝑖 + 0.3𝑋5,𝑖

+ 0.2𝑋8,𝑖 + 0.2𝑋10,𝑖 + 0.75𝑇𝑖 + 𝜀𝑌 ,𝑖.

(49)

or ∀𝑖, the treatment variable 𝑇𝑖 ∼ (0.5), the pre-treatment covariates
1,𝑖, 𝑋2,𝑖,… , 𝑋10,𝑖 are independently drawn from  (0, 1). The random

rror terms are set as

𝑀1 ,𝑖 = 𝜗(1−𝑇𝑖)
𝑀1 ,0

𝜗𝑇𝑖
𝑀1 ,1

, 𝜀𝑀2 ,𝑖 = 𝜗(1−𝑇𝑖)
𝑀2 ,0

𝜗𝑇𝑖
𝑀2 ,1

,

𝑀3 ,𝑖 = 𝜗(1−𝑇𝑖)
𝑀3 ,0

𝜗𝑇𝑖
𝑀3 ,1

, 𝜀𝑌 ,𝑖 = 𝜗(1−𝑇𝑖)𝑌 ,0 𝜗𝑇𝑖𝑌 ,1,

here 𝜗𝑌 ,0 ∼  (0, 0.01(𝑋2
1,𝑖 + 𝑋2

2,𝑖)), 𝜗𝑌 ,0 ∼  (0, 0.1 cos(5𝑋1,𝑖𝑋2,𝑖)2),
𝑀1 ,0 ∼  (0, 0.252), 𝜗𝑀1 ,1 ∼  (−0.5, 0.5), 𝜗𝑀2 ,0 ∼ 0.2𝑡(10), 𝜗𝑀2 ,1 ∼
(0, 0.25 cos(𝑋1,𝑖)2), 𝜗𝑀3 ,0 ∼  (−0.5, 0.5), 𝜗𝑀3 ,1 ∼  (0, 0.1𝑋2

2,𝑖), and
(10) represents t-distribution with a degree of freedom 10. Obviously,
he objective direct effect is 0.75. The objective indirect effect through

1 is 1 (2 × 0.5), through 𝑀2 is 0.5 (0.5 × 1). Since 𝑀3 is not involved
n (49), the corresponding indirect effect is 0.

Following Fig. 4, the GAMN-M for (49) is designed as follows. For
ll the 𝐺𝑝

𝑀 s (𝑝 = 1, 2, 3) in mediation block, their network structures
ssociated with 𝑍𝑝

𝑀 and 𝑋 are the same and designed as 4-layer
NNs. In all the 𝐺𝑝

𝑀 s, 𝑇 is the linear component of the network. The
econd and third hidden layers of 𝐺𝑝

𝑀 s contain 32 and 128 neurons,
espectively. In 𝐺𝑌 , 𝑴 and 𝑇 formulate the linear components of the
etwork. The structure associated with 𝑍𝑌 and 𝑋 is a 4-layer network,
he second and third layers of which also contain 32 and 128 neurons,
espectively. 𝒁𝑝

𝑀 s and 𝒁𝑌 are drawn from  ((0, 1)2). For the output
ayers of 𝐺𝑝

𝑀 and 𝐺𝑌 , the identity function is adopted to generate a
ontinuous outcome. The architecture of discriminators 𝐷𝑝

𝑀 (𝑝 = 1, 2, 3)
nd 𝐷𝑌 are the same except the input variables. For ∀𝑝, 𝐷𝑝

𝑀 takes
, 𝑇 and 𝑀𝑝 as input variables, while 𝐷𝑌 takes 𝑋, 𝑇 , 𝑌 and three
ediators (𝑀1,𝑀2,𝑀3) for its input layer. The second and third layers

𝑝

12

f 𝐷𝑀 and 𝐷𝑌 contain 128 and 32 neurons, respectively. For the
utput layers of 𝐷𝑝
𝑀 s and 𝐷𝑌 , sigmoid functions are adopted in order

o identify real or generated samples. All the hidden layers of 𝐺𝑝
𝑀 ,

𝑝
𝑀 , 𝐺𝑌 and 𝐷𝑌 are formulated using Leaky ReLU function with slope

oefficient 0.2. A total of 25000 samples are generated and used for the
odeling. Following Section 5.1, 20000 samples are randomly selected

or training and the rest 5000 samples are for testing. Our GAMN-M is
irst trained based on the training set and then used to estimate the
reatment effects on testing set. To obtain the optimal performance,
dam with learning rate 𝜂 = 0.0001 is utilized, and the training is
onducted for 1500 epochs.

Fig. 5(b) shows the learning process and convergence curves of
stimating direct effect △𝑇→𝑌 given by (30), total indirect effect
𝑇→𝑴→𝑌 given by (34), and indirect effects through different paths

△𝑇→𝑀1→𝑌 , △𝑇→𝑀2→𝑌 and △𝑇→𝑀3→𝑌 ) given by (38) on the testing
set with 𝑁𝑔 = 1. The objective values are presented by black dotted
ines. Although multiple mediators are involved, our model can achieve
onvergence and accurate estimations after about 300 epochs, demon-
trating the effectiveness of our method for this example. The direct
ffects △𝑇→𝑌 (𝑗)s, indirect effects via the 𝑝th mediator △𝑇→𝑀𝑝→𝑌 (𝑗)s

and total indirect effects △𝑇→𝑴→𝑌 (𝑗)s (𝑗 = 1, 2,… , 𝑁𝑔) are calculated
on the whole dataset with 𝑁𝑔 = 1000. Then, △𝑇→𝑌 , △𝑇→𝑀𝑝→𝑌 (𝑝 =
1, 2, 3), △𝑇→𝑴→𝑌 and the corresponding 95% CI are calculated follow-
ing the method in Section 3.2.2. To improve the accuracy and stability,
the estimations of the last 100 epochs are averaged to formulate our
final results.

Similar to Section 5.1, the benchmark traditional and GAN-based
methods are used for comparison. We conduct experiments with dif-
ferent sample sizes (2000, 5000, and 10000) using GAMN-M. All the
numerical results obtained by different methods are reported in Ta-
ble 3, which demonstrates that the proposed method and other GAN-
based methods significantly outperforms the traditional methods in this
example.

5.3. GAMN-S with realistic data: China education panel survey

The China Education Panel Survey (CEPS) is a large-scale, nationally
representative and longitudinal survey, which is conducted by the Na-
tional Survey Research Center (NSRC) at Renmin University of China.
Documenting educational processes and transitions by which students
progress through various educational stages, the CEPS aims to explain
the linkages between individuals’ educational outcomes and multiple
contexts of families, school processes, communities and social structure
and further study the effects of educational outcomes. The baseline
survey of CEPS is completed in the 2013–2014 academic year. A
stratified, multistage sampling design with probability proportional to
size is used to randomly select a school-based, nationally representative
sample of 19487 students in 438 classrooms of 112 schools in 28
county-level units in mainland China (http://ceps.ruc.edu.cn/).

In this study, the interested outcome (𝑌 ) is the total score of the

sampled students on core subjects (Chinese, mathematics, and English).

http://ceps.ruc.edu.cn/
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Table 3
The estimated treatment effects by GAMN-M and other benchmark methods for system (49).
Methods △𝑇→𝑌 △𝑇→𝑴→𝑌 △𝑇→𝑀1→𝑌 △𝑇→𝑀2→𝑌 △𝑇→𝑀3→𝑌

CI(△𝑇→𝑌 ) CI(△𝑇→𝑴→𝑌 ) CI(△𝑇→𝑀1→𝑌 ) CI(△𝑇→𝑀2→𝑌 ) CI(△𝑇→𝑀3→𝑌 )
True value 0.75 1.5 1.0 0.5 0

GAMN-M 0.7448 1.4841 0.9916 0.4922 0.0002
[0.7447, 0.7449] [1.4837, 1.4844] [0.9914, 0.9918] [0.4919, 0.4924] [0.0001, 0.0003]

OLS 0.9139 1.3167 0.8747 0.4317 0.0133
[0.8394, 0.9915] [1.2377, 1.4282] [0.7925, 0.9679] [0.3922, 0.4879] [−0.0283, 0.0575]

SEM 0.9187 1.3080 0.8720 0.4228 0.0132
[0.8555, 0.9820] [1.2471, 1.3689] [0.8205, 0.9234] [0.3971, 0.4485] [−0.0068, 0.0333]

Bayesian 0.9178 1.3087 0.8717 0.4229 0.0136
[0.8538, 0.9851] [1.2411, 1.3730] [0.7942, 0.9475] [0.3983, 0.4496] [−0.0172, 0.0427]

WGAN 0.7438 1.4872 0.9822 0.5019 0.0032
[0.7437, 0.7439] [1.4868, 1.4876] [0.9819, 0.9824] [0.5014, 0.5022] [0.0031, 0.0033]

WGAN-GP 0.7380 1.4966 0.9918 0.5047 0.0001
[0.7380, 0.7381] [1.4964, 1.4969] [0.9917, 0.9919] [0.5044, 0.5049] [0.0001, 0.0001]

LSGAN 0.7486 1.4904 0.9921 0.4976 0.0007
[0.7486, 0.7486] [1.4901, 1.4907] [0.9919, 0.9923] [0.4973, 0.4978] [0.0007, 0.0007]

GAMN-M(2000) 0.8007 1.4102 0.9485 0.4732 −0.0115
[0.8006, 0.8008] [1.4092, 1.4109] [0.9483, 0.9486] [0.4722, 0.4740] [−0.0116, −0.0114]

GAMN-M(5000) 0.7512 1.4610 0.9827 0.4827 −0.0044
[0.7512, 0.7512] [1.4605, 1.4616] [0.9826, 0.9829] [0.4821, 0.4832] [−0.0044, −0.0044]

GAMN-M(10000) 0.7457 1.4928 0.9893 0.5047 −0.0012
[0.7457, 0.7457] [1.4923, 1.4932] [0.9890, 0.9896] [0.5043, 0.5050] [−0.0012, −0.0012]

Note: The results presented in this table are based on 𝑁𝑔 = 1000 repeated trials, the estimates and CIs are obtained through multiple averages and
calculating percentiles of them.
Table 4
Descriptions of variables in the CEPS dataset.
Factor Variable Description

Academic performance 𝑌 Total score of Chinese, math, and English

Cognitive ability 𝑀 Standardized cognitive ability test scores

Parental involvement 𝑇 =1 if greater than average, =0 otherwise

Student’s gender 𝑋1 =1 if male, =0 otherwise
Grade 𝑋2 =1 if grade 9, =0 grade 7
Ethnic nationality 𝑋3 =1 if Han nationality, =0 otherwise
Location of Hukou 𝑋4 =1 if located in suburban district, =0 otherwise
Nearsightedness 𝑋5 =1 if short-sighted, =0 otherwise
Only-children 𝑋6 =1 if the only child of family, =0 otherwise
Boarding status 𝑋7 =1 if live in school at night, =0 otherwise
Mother’s education 𝑋8 =1 if complete senior high school, =0 otherwise
Father’s education 𝑋9 =1 if complete senior high school, =0 otherwise
Financial condition 𝑋10 =1 if moderate or above moderate income, =0 otherwise
Head teacher’s gender 𝑋11 =1 if male, =0 otherwise
Teaching experience 𝑋12 Years of teaching experience
The treatment variable (𝑇 ) is home-based parental involvement and
is measured from three perspectives. The first one is ‘‘parent tutoring
and supervision’’, which includes whether the parents have checked
children’s homework this semester (𝑄1), and whether parents have
tutored their children in the last week before exams (𝑄2). The second
one is ‘‘proactively talking with children’’, which includes whether the
parents discuss school life topics with their children, such as things
happening at school (𝑄3), children’s relationship between friends (𝑄4),
teachers (𝑄5), worries and troubles (𝑄6), and children’s mood (𝑄7).
The third one is ‘‘time spending with children’’, which includes whether
the parents do accompanying activities with children more than once
a month, such as having dinner (𝑄8), reading books (𝑄9), watching
TV (𝑄10), playing sports (𝑄11), visiting museums or zoos (𝑄12), and
going out to watch movies/shows/sports games (𝑄13). For each parent,
the number of answering ‘yes’ in 𝑄1 to 𝑄13 are counted and used to
quantify the treatment 𝑇 . 𝑇 = 1, if the number of ‘yes’ is larger than
. Otherwise, 𝑇 = 0. In this setting, 𝑇 = 1 implies the home-based

involvement of parents is greater than average.
The mediator 𝑀 here is cognitive ability, which is measured by

standardized test scores for students’ logical thinking and problem-
solving skills. The pre-treatment covariates include students’ demo-
graphic characteristics, family financial conditions, and head teacher’s
characteristics. The covariates are summarized in Table 4.
13
In this experiment, we aim at modeling the direct effect of parental
involvement (𝑇 ) on student academic performance (𝑌 ) and the me-
diating role of the cognitive ability (𝑀) playing in this system. Fol-
lowing Fig. 2, the GAMN-S for this example is designed as follows.
The nonlinear parts of 𝐺𝑀 (𝐺𝑌 ) are designed as 4-layer FNNs with
the same structure. The input variables are set as 𝑍𝑀 (𝑍𝑌 ), and 𝑋𝑖
(𝑖 = 1, 2,… , 12). 𝒁𝑀 ∼  ((0, 1)2) and 𝒁𝑌 ∼  (((0, 1)2)). 𝑇 is the
linear component of 𝐺𝑀 . 𝑇 and 𝑀 formulate the linear component of
𝐺𝑌 . For the hidden layers, the second and third layers contain 32 and
128 neurons, respectively. For the discriminators, both 𝐷𝑀 and 𝐷𝑌 are
also designed as 4-layer FNNs with the same structure. 𝐷𝑀 takes 𝑋, 𝑇
and 𝑀 as input variables, and 𝐷𝑌 takes 𝑋, 𝑇 , 𝑀 and 𝑌 for its input
layer. The second and third hidden layers contain 64 and 32 neurons,
respectively. All of the hidden layers in 𝐺𝑀 , 𝐷𝑀 , 𝐺𝑌 and 𝐷𝑌 are set to
be activated by Leaky ReLU function with slope coefficient 0.2.

After removing the observations with missing values, 16,394 sam-
ples are selected for our analysis. A total of 13,116 (80% of the selected
dataset) samples are randomly chosen for training, and the remaining
3278 samples are for testing. Adam with learning rate 0.00001 is used
as the optimizer for the training. The GAMN-S is trained for 500 epochs.
OLS, SEM and Bayesian method are also used for comparison.

Theocratically, all the traditional methods and our GAMN-S can
be available for modeling. However, since the true model and the
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Fig. 6. (a) Displays the convergence curve of the testing MSE by GAMN-S. The red solid line illustrates the testing MSE by GAMN-S for each epoch, while the blue dotted line
represents the testing MSE obtained through SEM. The testing MSE by GAMN-S converges after approximately 250 epochs and, moreover, remains lower than the testing MSE
achieved by SEM. (b) displays the convergence curves of the estimations of direct effect and indirect effects. The black dotted line represents the estimation of the direct effect,
and the green solid line represents the estimation of the direct effect for each epoch. The estimations reach their convergence after approximately 250 epochs, and the convergence
points provide the final estimated values for both the direct and indirect effects.
.

underlying true treatment effects are unknown for realistic data, it is
quite difficult to appraise the results obtained by different methods.
Noticing that all the traditional methods and our GAMN can provide
the filtered factuals (observations) and out-of-sample predictions for
𝑀𝑖 and 𝑌𝑖, we propose to first appraise these methods by comparing
their predictions on the testing set. Suppose that 𝐺𝑀 (⋅; 𝜃̂𝐺𝑀 (𝑙)) and
𝐺𝑌 (⋅; 𝜃̂𝐺𝑌 (𝑙)) are the generators trained at 𝑙th epoch using the training
set. 𝜃̂𝐺𝑀 (𝑙) and 𝜃̂𝐺𝑌 (𝑙) are corresponding network parameters. For the 𝑖th
sample in the testing set, we have

𝑀̂𝑖(𝑙) = 𝐺𝑀 (𝒁𝑀𝑖
(𝑙), 𝑇𝑖,𝑿𝑖; 𝜃̂𝐺𝑀 (𝑙)), 𝑌𝑖(𝑙) = 𝐺𝑌 (𝒁𝑌𝑖 (𝑙), 𝑇𝑖,𝑿𝑖, 𝑀̂𝑖(𝑙); 𝜃̂𝐺𝑌 (𝑙)),

(50)

where 𝑀̂𝑖(𝑙) and 𝑌𝑖(𝑙) are the predictions of 𝑀𝑖 and 𝑌𝑖 for the 𝑙th epoch,
respectively. To save the computational cost, 𝑁𝑔 is set as 1. Then, the
mean square error (MSE) on the testing set for the 𝑙th epoch is defined
as

𝑀𝑆𝐸(𝑙) = 1
3278

3278
∑

𝑖=1
(𝑌𝑖(𝑙) − 𝑌𝑖)2, (51)

where 𝑌𝑖s correspond to the samples in the testing set. Accordingly,
the MSEs by the traditional methods can also be trivially defined and
calculated.

Fig. 6(a) shows the prediction performance in terms of the testing
MSEs given by (51). Considering that the prediction results using the
three traditional models are similar, we only compare GAMN-S with
the SEM model. Our method produces higher prediction accuracy than
the SEM model, implying that the proposed GAMN can approximate
the underlying reality more efficiently from a machine learning per-
spective. Thus, the treatment effects inferred by our GAMN are more
convincing compared with the traditional methods. Fig. 6(b) presents
the treatment effects calculated on the testing set, which shows that
the estimations achieve convergence after about 300 epochs. The direct
effects △𝑇→𝑌 (𝑗)𝑠 and indirect effects △𝑇→𝑀→𝑌 (𝑗)𝑠 (𝑗 = 1, 2,… , 𝑁𝑔)
calculated on the whole dataset with 𝑁𝑔 = 1000. The corresponding
empirical distributions and 95% CI can be calculated according to
the method developed in Section 3.2.1. △𝑇→𝑌 and △𝑇→𝑀→𝑌 are
also calculated accordingly. Similar to Section 5.1, to improve the
accuracy and stability, the results of the last 100 epochs are averaged
to formulate our final estimations.
14
Table 5
Estimated treatment effects by GAMN-S and other benchmark methods for CEPS dataset

Methods △𝑇→𝑌 CI(△𝑇→𝑌 ) △𝑇→𝑀→𝑌 CI(△𝑇→𝑀→𝑌 )

GAMN-S 0.9358 [0.9289, 0.9426] 1.1978 [1.1909, 1.2051]
OLS 1.4036 [0.6647, 2.1426] 1.5252 [1.2235, 1.8268]
SEM 1.404 [0.660, 2.09] 1.525 [1.241, 1.83]
Bayesian 1.394 [0.679, 2.14] 1.517 [1.200, 1.83]
WGAN 0.9602 [0.8974, 1.0191] 1.2775 [1.1966, 1.3636]
WGAN-GP 1.0417 [1.0389, 1.0448] 1.2394 [1.2363, 1.2425]
LSGAN 0.9395 [0.8982, 0.9908] 1.1751 [1.1171, 1.2289]

Note: The results presented in this table are based on 𝑁𝑔 = 1000 repeated trials, the
estimates and CIs are obtained through multiple averages and calculating percentiles
of them.

All the numerical results obtained by our method and the other
benchmark methods are reported in Table 5. Our estimation results
differ from those of the other methods and probably offer a more
reliable mediation analysis compared with the traditional methods
given its smaller MSEs and shorter length of CIs.

5.4. GAMN-m with realistic data: China health and nutrition survey

The China Health and Nutrition Survey (CHNS), an international
collaborative project between the Carolina Population Center at the
University of North Carolina at Chapel Hill and the National Institute
for Nutrition and Health at the Chinese Center for Disease Control and
Prevention, is a large-scale longitudinal study (https://www.cpc.unc.
edu/projects/china). The survey was started in 1989 and conducted
ten times until 2015. CHNS was designed to investigate how social
and economic transformations in Chinese society affect the health and
nutritional status of the population.

As urbanization brings dietary changes and increases the risk of obe-
sity through people’s intake, this example focuses on how urbanization
affects people’s health conditions by evaluating the mediating role of
primary nutrients. The interested dependent variable (𝑌 ) is the body
mass index (BMI), which is commonly used to measure the obesity of
a person. The treatment (𝑇 ) is urbanization. 𝑇 = 1 if the individual
lived in urban area during the survey year, while 𝑇 = 0 for those
in rural areas. Three main nutrients in food (in grams): carbohydrate
(𝑀1), fat (𝑀2) and protein (𝑀3), are considered mediators, and the
corresponding data are collected from the participants’ 24-h recall of

https://www.cpc.unc.edu/projects/china
https://www.cpc.unc.edu/projects/china
https://www.cpc.unc.edu/projects/china
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Table 6
Descriptions variables in the CHNS dataset.
Factor Variable Description

BMI 𝑌 ratio of weight (kg) to the square of height (m2)

Carbohydrate 𝑀1 Daily intake of carbohydrate (grams)
Fat 𝑀2 Daily intake of fat (grams)
Protein 𝑀3 Daily intake of protein (grams)

Urbanization 𝑇 =1 if live in urban, =0 otherwise

Gender 𝑋1 =1 if male, =0 otherwise
Marital status 𝑋2 =1 if married, =0 otherwise
Age 𝑋3 age of the individual
Education 𝑋4 =1 if possess upper middle school degree, =0 otherwise
Smoking 𝑋5 =1 if smokes cigarettes, =0 otherwise
Alcohol 𝑋6 =1 if drinks alcohol, =0 otherwise
Chronic disease 𝑋7 =1 if diagnosed with chronic disease, =0 otherwise

Year
𝑋8 =1 if in 1991,1993 or 1997, =0 otherwise
𝑋9 =1 if in 2000,2004,2006 or 2009, =0 otherwise
𝑋10 =1 if in 2011, =0 otherwise
Fig. 7. (a) Displays the convergence curve of the testing MSE by GAMN-M. The red solid line illustrates the testing MSE by GAMN-M for each epoch, while the blue dotted line
represents the testing MSE obtained through SEM. The testing MSE by GAMN-M converges after approximately 200 epochs and, and remains lower than the testing MSE achieved
by SEM. (b) displays the convergence curves of the estimations of direct effect and indirect effects. The blue line represents the estimation of the direct effect, and the yellow line
represents the estimation of the total direct effect for each epoch. Additionally, the black line, yellow line, and green line represent the estimations of the indirect effects through
𝑀1, 𝑀2, and 𝑀3, respectively. The estimations reach their convergence after approximately 200 epochs, and the convergence points provide the final estimated values for both
the direct and indirect effects.
food consumption in the past three days. The pre-treatment covariates
include individuals’ demographic characteristics. The covariates are
summarized in Table 6.

GAMN-M is utilized for this experiment. For each 𝐺𝑝
𝑀 (𝑝 = 1, 2, 3)

in the mediation block, the structure associated with 𝑍𝑝
𝑀 (𝑝 = 1, 2, 3)

and 𝑋 is set as a 4-layer FNN. 𝑇 formulates the linear component. The
second and third layers of 𝐺𝑝

𝑀 contain 32 neurons and 128 neurons,
respectively. In 𝐺𝑌 , 𝑀 and 𝑇 formulate the linear component. The
structure associated with 𝑍𝑌 and 𝑋 is designed as the same as 𝐺𝑝

𝑀 .
𝒁𝑝

𝑀 s and 𝒁𝑌 are drawn from 𝑁((0, 1)2). In order to generate continuous
outcome, identity functions are adopted to the output layers of 𝐺𝑝

𝑀 s and
𝐺𝑌 . 𝐷𝑝

𝑀 s and 𝐷𝑌 are 4-layer FNNs. 𝐷𝑝
𝑀 s take 𝑋, 𝑇 and 𝑀𝑝s as input

variables, while 𝐷𝑌 takes 𝑋, 𝑇 , 𝑌 and three mediators (𝑀1,𝑀2,𝑀3)
for its input layer. The second and third layers of 𝐷𝑝

𝑀 s and 𝐷𝑌 contain
128 and 32 neurons, respectively. The output layers of 𝐷𝑘

𝑀 and 𝐷𝑌 are
activated by sigmoid functions. Leaky ReLU with slope coefficient 0.2
is used to activate all the hidden layers of the networks.

A total of 102,575 observations were collected from year 1991 to
2011. After removing the samples with missing values, 80,341 samples
are selected for modeling, among which 64,272 (80% of the dataset)
samples are randomly chosen for training, and the remaining 16,069
samples are for testing. Adam algorithm with learning rate 0.0001 is
utilized for training. The GAMN-M model is trained for 500 epochs.
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Fig. 7(a) presents the testing MSEs by different methods, showing
that better predicting results are obtained by our method. As discussed
in Section 5.3, it implies that our method can approximate the underly-
ing reality more efficiently and offer more reliable mediation analysis.
Fig. 7(b) presents the estimations of treatment effects at each epoch.
The estimations achieve convergence after about 400 epochs, which
illustrates the feasibility of our GAMN. The generated direct effects and
indirect effects are calculated on the whole dataset with 𝑁𝑔 = 1000.
The empirical distributions and 95% CI of the treatment effects can be
calculated accordingly. The results of the last 100 epochs are averaged
to formulate our final estimations.

All the numerical results obtained by our method and the other
benchmark methods are reported in Table 7. Our results suggest a
more significant total mediation effect and a positive mediation effect
through carbohydrate, which is more conformable to the reality of
Chinese society [54].

5.5. Further discussions on the implementation of our method

Implementation challenges. While our method has demonstrated
its effectiveness in these examples, the implementation of our method
comes with certain challenges. Due to the involvement of deep neural
networks, GAMN requires a larger amount of data for training com-
pared to the traditional models. When dealing with real-world problems
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Table 7
The estimated treatment effects by GAMN-M and other benchmark methods for CHNS dataset.

Methods △𝑇→𝑌 △𝑇→𝑴→𝑌 △𝑇→𝑴1→𝑌 △𝑇→𝑴2→𝑌 △𝑇→𝑴3→𝑌
CI(△𝑇→𝑌 ) CI(△𝑇→𝑴→𝑌 ) CI(△𝑇→𝑴1→𝑌 ) CI(△𝑇→𝑴2→𝑌 ) CI(△𝑇→𝑴3→𝑌 )

GAMN-M 0.1964 0.1227 0.0961 0.0027 0.0239
[0.1963, 0.1965] [0.1225, 0.1229] [0.0960, 0.0962] [0.0026, 0.0028] [0.0238, 0.0240]

OLS 0.223 −0.026 −0.156 0.087 0.039
[0.172, 0.272] [−0.065, 0.010] [−0.211, −0.092] [0.061, 0.110] [0.031, 0.046]

SEM 0.1999 0.0315 −0.0201 0.0257 0.0259
[0.1483, 0.2515] [0.0179, 0.0451] [−0.0312, −0.0090] [0.0197, 0.0316] [0.0208, 0.0310]

Bayesian 0.2007 0.0314 −0.0202 0.0258 0.0259
[0.1450, 0.2520] [0.0155, 0.0479] [−0.0340, −0.0056] [0.0194, 0.0324] [0.0209, 0.0314]

WGAN 0.2043 0.1213 0.0932 0.0024 0.0256
[0.2007,0.2080] [0.1185,0.1244] [0.0924,0.0941] [0.0023,0.0025] [0.0245,0.0267]

WGAN-GP 0.2034 0.1346 0.1031 0.0033 0.0282
[0.1998, 0.2065] [0.1343, 0.1349] [0.1029, 0.1033] [0.0031, 0.0035] [0.0280, 0.0284]

LSGAN 0.1825 0.1299 0.1032 0.0039 0.0228
[0.1819,0.1833] [0.1254,0.1348] [0.0997,0.1106] [0.0034,0.0043] [0.0219,0.0231]

Note: The results presented in this table are based on 𝑁𝑔 = 1000 repeated trials, the estimates and CIs are obtained through multiple averages and calculating percentiles of them.
here the dataset is limited in size, the model’s estimation accuracy
ay be compromised, and it might even fail to converge. This is
articularly relevant in specific topics, such as medical outcome eval-
ation [55], impact of behavior interventions on mental health [56].
n these topics, mediation analysis is commonly needed, typically in-
olving survey data with limited sample sizes. This limitation adds
hallenges to the implementation of GAMN. Additionally, even with an
mple dataset, the training process of GAN-based models is more time
onsuming and computationally intensive compared to the traditional
odels. Fine-tuning the hyperparameters is also necessary to achieve

he best learning performance.
Computational complexity. The computational complexity of GANs

depends on several factors, including the network architecture, dataset
size, and data dimensionality, as well as the intricacy of data pat-
terns [57]. GANs are commonly developed for image processing tasks
where both the input and output of the network are images. In such
cases, the dimensions of the network’s input and output layers tend
to be very high. Image data itself is usually characterized by complex
patterns, especially in tasks like image-to-image translation, which
require deep neural network architectures for effective handling. These
factors contribute to the complexity of GAN architectures, involving a
large number of parameters, and consequently demanding a substantial
volume of training samples. In contrast, CMA is primarily applied
in fields such as social sciences, psychology, and medicine. These
domains typically involve data with underlying patterns that are less
complex and datasets that are much smaller compared to image-related
problems. In GAMN, both the input and output of the network consist of
low-dimensional variables, especially with the generator’s output being
one-dimensional. The crucial partially linear design in GAMN further
reduce the network complexity. Therefore, our GAMN, designed specif-
ically for mediation problems, exhibits significantly lower dimensions
in terms of input and output variables, network depth, and complexity
when compared to conventional GANs designed for image tasks. With
similar optimization objectives and training algorithms (Adam), the
computational complexity of GAMN is substantially lower than that of
GANs used for image-related tasks. The training of GANs also benefits
from highly developed computing frameworks such as PyTorch, and our
proposed GAN-based approach is computationally feasible for CMA.

6. Conclusion

GANs have achieved remarkable success in image tasks. However,
developing a generative learning approach for mediation analysis re-
mains an unexplored but promising area. This paper proposes two
novel GAN-based mediation models by reinterpreting the CMA prob-
lem from a generative learning perspective. Our carefully designed
network architecture and novel encoding scheme for complex noise
16

enable our models to provide more accurate counterfactual predictions M
than existing benchmark methods when dealing with complex data
patterns. Furthermore, by efficiently inferring individual direct/indirect
treatment effects from the estimated counterfactuals, our models lead
to more promising CMA results. Numerical examples are presented.
In the two examples with artificial data, our approach yielded highly
precise estimation results. In contrast, the traditional methods exhibit
estimation errors exceeding 30% for both direct and indirect effects in
the single-mediator case, and nearly 20% in the multi-mediator case. In
the benchmark real-world data examples, our method outperforms the
traditional methods by 15% in out-of-sample predictions. This suggests
that the treatment effects deduced through GAMN are more compelling
compared to the traditional methods from a machine learning per-
spective. The encouraging quantitative results further illustrate the
effectiveness and efficiency of our method. Our study also represents
a significant step toward the development of effective approaches for
deploying generative learning methods in mediation problems.

Despite the efficiency, the proposed mediation method still has
several limitations. First, the architecture of our GAMN is developed
for single-level mediation problems. The architecture of GAMN is not
well-suited for handling multi-layer mediation problems with com-
plex causal pathways. To address the multi-layer mediation issues,
the network structure must be redesigned. Second, high-dimensional
mediation problems have been a focal point of research in both the
statistical and machine learning communities. The central challenge
in these problems revolves around variable selection and dimension
reduction with respect to the sparsity of the mediator variables. How-
ever, our optimization schemes and model structure are not available
for high-dimensional settings and cannot be trivially extended to ad-
dress the high-dimensional problems. Third, a significant advantage
of our approach lies in employing deep neural networks to model
the distribution of noise, allowing for coupling between random terms
and covariates. However, when the underlying ture relationships be-
tween variables and the characteristics of random terms are relatively
straightforward within the data, our method may face a risk of overfit-
ting. Consequently, in such cases, our approach might not consistently
outperform traditional methods. Therefore, our future research will
be dedicated to developing GAN-based models for addressing high-
dimensional mediation problems and multi-layer mediation problems,
leveraging the GAN-based approach to conduct empirical studies and
address important practical challenges.
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Appendix

By the argument in the main text, we already have

D𝑇𝑉 (𝑝𝑋,𝑌 ,𝑇 , 𝑝𝑋,𝐺̂(𝑍,𝑇 ,𝑋),𝑇 ) ≲ 𝛥1 + 𝛥2 + 𝛥3, (52)

where 𝛥1 = sup𝐷 (𝐺̂, 𝐷) − sup𝐷∈ (𝐺̂, 𝐷), 𝛥2 = sup𝐷∈ sup𝐺∈
(𝐺,𝐷) − 𝑛(𝐺,𝐷)|, and 𝛥3 = sup𝐷 (𝐺̄, 𝐷) − sup𝐷 (𝐺∗, 𝐷). First, the

standard empirical process argument in [49] (Lemma B.2) provides the
convergence rate of estimation error 𝛥2:

𝛥2 ≲ (𝑛−
2

2+𝑑+𝑚 + 𝑛−
2

2+𝑑+𝑞 ) = (𝑛−
2

3+𝑑 ), (53)

where 𝑑 is the sum of dimension of 𝑋 and 𝑇 , 𝑚 is the dimension of
outsource noise 𝑍 and 𝑞 = 1 is the dimension of 𝑌 . The term simplicity
tells the fact that the higher dimension we use in 𝑌 ,𝑋, 𝑇 ,𝑍, the
slower convergence rate of estimation error we face. A low dimensional
structure in 𝑋, 𝑇 , 𝑌 is preferred. Followed by [49] (Lemma B.3), as 𝑛
goes to infinity, we have

E𝑋,𝑌 ,𝑍 𝛥1 → 0. (54)

Then, we turn to control the approximation error 𝛥3 in . Note that 𝐺̄
is any element in . For the fixed 𝐺̄, using the optimality in 𝐷 [23], we
have the following result:

𝐷̃(𝜍) = arg max
𝐷

(𝐺̄, 𝐷) =
𝑝𝑋,𝑌 ,𝑇 (𝜍)

𝑝𝑋,𝐺̄,𝑌 (𝜍) + 𝑝𝑋,𝑌 ,𝑇 (𝜍)
, (55)

where 𝜍 ∈  ×  ×  . Then we are able to derive

𝛥3 = sup
𝐷

(𝐺̄, 𝐷) − sup
𝐷

(𝐺∗, 𝐷)

= (𝐺̄,
𝑝𝑋,𝑌 ,𝑇

𝑝𝑋,𝐺̄,𝑌 + 𝑝𝑋,𝑌 ,𝑇
) − (𝐺∗,

𝑝𝑋,𝑌 ,𝑇

𝑝𝑋,𝐺∗ ,𝑌 + 𝑝𝑋,𝑌 ,𝑇
)

≡ 𝐿̃(𝐺̄) − 𝐿̃(𝐺∗). (56)

ince  is continuous and 𝐿̃ is a composite function of  and optimal
iscriminator, it turns out 𝐿̃ maintains the continuity. Note (56) holds
or any 𝐺̄ ∈ , that 𝛥3 → 0 for some 𝐺̄ ∈  suffices to show existence
f 𝐺̄ ∈  can closed to 𝐺∗ with any given tolerance. However, our
eural architecture is not a standard fully connected network, hence the
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tandard approximation result is not applicable. Consider the following
ecomposition,

inf
̄∈

‖𝐺̄ − 𝐺∗
‖ ≤ inf

𝐺̄∈

{

‖𝐺̄ − 𝐺𝐹𝑁𝑁‖ + ‖𝐺𝐹𝑁𝑁 − 𝐺∗
‖

}

≤ inf
𝐺̄∈

‖𝐺̄ − 𝐺𝐹𝑁𝑁‖ + 
( log 𝑛
𝑛2+𝑑+𝑚

)

, (57)

where 𝐺𝐹𝑁𝑁 is a fully connected ReLU network with a specific setup
considered in [49, Lemma B.1], and its convergence rate is provided in
the second inequality above.

In turn, we denote 𝐺𝐹𝑁𝑁 = 𝐺1(𝑍,𝑋)+𝐺2(𝑇 )+𝐺3(𝑍, 𝑇 ,𝑋), where 𝐺1
and 𝐺2 are the parts of 𝐺𝐹𝑁𝑁 that only contain information from (𝑍,𝑋)
nd 𝑇 , respectively, and 𝐺3 only contains its remaining interaction
nformation between (𝑍,𝑋) and 𝑇 . Therefore, we consider a specific
̄ ∈  = 𝐺1(𝑍,𝑋) + 𝛽𝑇 , remaining a linear part 𝛽𝑇 to be optimized.
hen, we have

𝑙𝑖𝑒𝑛𝑎𝑟 ≡ inf
𝐺̄∈

‖𝐺̄ − 𝐺𝐹𝑁𝑁‖ ≤ inf
𝛽
‖𝛽𝑇 − 𝐺1(𝑇 ) − 𝐺3(𝑍, 𝑇 ,𝑋)‖, (58)

s a measure of linear projection error. Hence, only using fully con-
ected ReLU network, 𝛥3 = 𝑜(1), but when E𝑍,𝑇 ,𝑋𝜖𝑙𝑖𝑛𝑒𝑎𝑟 = 𝑜(1), by the
ontinuity of 𝐿̃, we still have 𝛥3 with practical solution in  to varnish.
ombined with the aforementioned three varnished results, we have

𝑋,𝑇 ,𝑌 ,𝑍 D𝑇𝑉 (𝑝𝑋,𝑌 ,𝑇 , 𝑝𝑋,𝐺̂(𝑍,𝑇 ,𝑋),𝑇 ) ≲ E𝑋,𝑇 ,𝑌 ,𝑍 (𝛥1 + 𝛥2 + 𝛥3) → 0. (59)

t further implies the weak convergence of the joint distribution,
𝑋,𝐺, 𝑇 )

𝑑
→ (𝑋, 𝑌 , 𝑇 ). By the Portmanteau Theorem and the weak law

f large number, it follows

̂ = 1
𝑁𝑔

1
𝑛

𝑛
∑

𝑖=1

𝑁𝑔
∑

𝑗=1

[

𝐺̂(𝑍𝑗 , 𝑋𝑖, 𝑇 = 𝑡1) − 𝐺̂(𝑍𝑗 , 𝑋𝑖, 𝑇 = 𝑡0)
]

𝑝
→ 𝜕𝑡0E(𝑌 |𝑋, 𝑇 = 𝑡0) (60)

he proof is completed. ♦
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